Doctoral thesis:  Holbrook A. Geometric Bayes, Diss. UC Irvine, 2018. Advisor: Prof. Babak Shahbaba, Ph.D.

Preprints:

Book chapters:

Refereed publications:

  1. Holbrook A. A quantum parallel Markov chain Monte Carlo, Journal of Computational and Graphical Statistics, (2023). PDF
  2. Holbrook A. Generating MCMC proposals by randomly rotating the regular simplex, Journal of Multivariate Analysis, 194 (2023): 105106. PDF
  3. Hassler G, Gallone B, Aristide L, Allen W, Tolkoff M, Holbrook A, Baele G, Lemey P, Suchard M. Principled, practical, flexible, fast: a new approach to phylogenetic factor analysis, Methods in Ecology and Evolution, 13 (2022): 2181-2197. PDF
  4. Holbrook A, Ji X, Suchard M. From viral evolution to spatial contagion: a biologically modulated Hawkes model, Bioinformatics, 38.7 (2022): 1846-1856. PDF
  5. Holbrook A, Ji X, Suchard M. Bayesian mitigation of spatial coarsening for a Hawkes model applied to gunfire, wildfire and viral contagion, Annals of Applied Statistics, 16.1 (2022): 573-595. PDF
  6. Tustison N, Cook P, Holbrook A, et al. ANTsX: A dynamic ecosystem for quantitative biological and medical imaging, Scientific Reports, 11.9068 (2021). PDF
  7. Holbrook A, Loeffler C, Flaxman S, Suchard M. Scalable Bayesian inference for self-excitatory stochastic processes applied to big American gunfire data, Statistics and Computing, 31.4 (2021). PDF
  8. Holbrook A, Lemey P, Baele G, Dellicour S, Brockmann D, Rambaut A, Suchard M. Massive parallelization boosts big Bayesian multidimensional scaling, Journal of Computational and Graphical Statistics, 30.1 (2021): 11-24. PDF
  9. Holbrook A, Tustison N, Marquez F, Roberts J, Yassa M, Gillen D. Anterolateral entorhinal cortex thickness as a new biomarker for early detection of Alzheimer’s disease, Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 12.1 (2020). PDF
  10. Ji X, Zhang Z, Holbrook A, Nishimura A, Baele G, Rambaut A, Lemey P, Suchard M. Gradients do grow on trees: a linear-time O(N)-dimensional gradient for statistical phylogenetics, Molecular Biology and Evolution, 37.10 (2020): 3047–3060. PDF
  11. Shahbaba B, Lan S, Streets J, Holbrook A. Nonparametric Fisher geometry with application to density estimation, Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), in PMLR 124 (2020): 101-110. PDF
  12. Holbrook A, Lumley T, Gillen D. Estimating prediction error for complex samples, Canadian Journal of Statistics, 48.2 (2020): 204-221. PDF
  13. Lan S, Holbrook A, Elias G, Fortin N, Ombao H, Shahbaba B. Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices, Bayesian Analysis, 15.4 (2020): 1199-1228. PDF
  14. Tustison N, Holbrook A, Avants B, Roberts J, Cook P, Reagh Z, Stone J, Gillen D, Yassa M. Longitudinal mapping of cortical thickness measurements: an Alzheimer’s Disease Neuroimaging Initiative-based evaluation study, Journal of Alzheimer's Disease, 71.1 (2019): 165-183. PDF
  15. Li L, Holbrook A, Shahbaba B, Baldi P. Neural network gradient Hamiltonian Monte Carlo, Computational Statistics, 34.1 (2019): 281-299. PDF
  16. Holbrook A. Differentiating the pseudo determinant, Linear Algebra and its Applications, 548 (2018): 293-304. PDF
  17. Holbrook A, Lan S, Vandenberg-Rodes A, Shahbaba B. Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation, Journal of Statistical Computation and Simulation, 88.5 (2018): 982-1002. PDF
  18. Holbrook A, Vandenberg-Rodes A, Fortin N, Shahbaba B. A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals, Stat, 6.1 (2017): 53-67. PDF
  19. Grill J, Holbrook A, Pierce A, Hoang D, Gillen D. Attitudes toward potential participant registries, Journal of Alzheimer's Disease, 56.3 (2017): 939-946. PDF