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Abstract

Summary: Mutations sometimes increase contagiousness for evolving pathogens. During an epidemic, scientists
use viral genome data to infer a shared evolutionary history and connect this history to geographic spread. We pro-
pose a model that directly relates a pathogen’s evolution to its spatial contagion dynamics—effectively combining
the two epidemiological paradigms of phylogenetic inference and self-exciting process modeling—and apply this
phylogenetic Hawkes process to a Bayesian analysis of 23 421 viral cases from the 2014 to 2016 Ebola outbreak in
West Africa. The proposed model is able to detect individual viruses with significantly elevated rates of spatiotempo-
ral propagation for a subset of 1610 samples that provide genome data. Finally, to facilitate model application in big
data settings, we develop massively parallel implementations for the gradient and Hessian of the log-likelihood and
apply our high-performance computing framework within an adaptively pre-conditioned Hamiltonian Monte Carlo
routine.

Contact: aholbroo@g.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has demon-
strated the need for new scientific tools for the analysis and predic-
tion of viral contagion across human landscapes. The mathematical
characterization of the complex relationships underlying pathogen
genetics and spatial contagion stands as a central challenge of 21st
century epidemiology. We approach this task by unifying two dis-
tinct probabilistic approaches to viral modeling. On the one hand,
Bayesian phylogenetics (Mau et al., 1999; Sinsheimer et al., 1996;
Suchard et al., 2001; Yang and Rannala, 1997) uses genetic sequen-
ces from a limited collection of viral samples to integrate over high-
probability shared evolutionary histories in the form of phylogenies
or family trees. On the other hand, self-exciting, spatiotemporal
Hawkes processes (Reinhart, 2018) model spatial contagion by
allowing an observed event to increase the probability of additional
observations nearby and in the immediate future.

Both modeling paradigms come with their own advantages. For
Bayesian phylogenetics, the past twenty years have witnessed a slew
of high-impact scientific studies in viral epidemiology (Boni et al.,
2020; Dudas et al., 2017; Faria et al., 2014; Gire et al., 2014;
Rambaut et al., 2008; Smith et al., 2009) and the rise of powerful
computing tools facilitating inference from expressive, hierarchical
models of phylogenies and evolving traits (Ronquist et al., 2012;

Suchard et al., 2018). Unfortunately, the number of evolutionary
trees to integrate over explodes with the number of viral samples
analyzed (Felsenstein, 1978), so Bayesian phylogenetic analyses typ-
ically restrict to a relatively small number of viral samples, at most
totaling a few thousand. The fact that viral cases that undergo genet-
ic sequencing usually represent a small subset of the total case count
exacerbates this issue. Thus, failure to detect phylogenetic clades
that represent novel strains on account of computational and sur-
veillance limitations always remain a possibility. Until now, these
weaknesses have also held for the sub-discipline of Bayesian phylo-
geography, which attempts to relate viral evolutionary histories to
geographic spread as represented by (typically Brownian) phylogen-
etic diffusions. These models describe viral spread through either
discretized (Lemey et al., 2009) or continuous (Lemey et al., 2010)
space, but both approaches induce their own form of bias
(Holbrook et al., 2021a). In the face of these shortcomings,
Bayesian phylogeography needs new tools for directly modeling spa-
tial contagion (Table 1).

Hawkes processes (Hawkes, 1971a,b, 1972, 2018; Hawkes and
Adamopoulos, 1973) are widely applicable point process models for
generally viral or contagious phenomena, such as earthquakes and
aftershocks (Fox et al., 2016; Hawkes and Adamopoulos, 1973;
Ogata, 1988; Zhuang et al., 2004), financial stock trading (Bacry
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et al., 2015; Hawkes, 2018), viral content on social media
(Kobayashi and Lambiotte, 2016; Rizoiu et al., 2017), gang violence
(Holbrook et al., 2021b; Loeffler and Flaxman, 2018; Mohler,
2013, 2014; Park et al., 2019) and wildfires (Schoenberg, 2004).
Unsurprisingly, Hawkes processes are natural models for the conta-
gion dynamics of biological viruses as well. Kim (2011) uses spatio-
temporal Hawkes processes (Reinhart, 2018), which model viral
cases as unmarked events in space and time, to model the spread of
avian influenza virus (H5N1). Meyer and Held (2014) incorporate
power laws to describe spatial contagion dynamics and model men-
ingococcal disease in Germany from 2001 to 2008. Although Rizoiu
et al. (2018) do not model epidemiological data, they do draw con-
nections between epidemiological susceptible, infectious or recov-
ered (SIR) models and Hawkes processes, showing that the rate of
events in the SIR model is equal to that of a finite-population
Hawkes model. Kelly et al. (2019) apply a temporal nonparametric
Hawkes process to the 2018–2019 Ebola outbreak in the
Democratic Republic of the Congo and successfully generate accur-
ate disease prevalence forecasts. Chiang et al. (2020) model
COVID-19 cases and deaths in the USA at the county level using
spatially indexed mobility and population data to modify the pro-
cess conditional intensity. Most recently, Bertozzi et al. (2020) com-
pare the performance of a temporal Hawkes process model with
temporally evolving conditional intensity to that of SIR and suscep-
tible, exposed, infectious or recovered (SEIR) models for modeling
regional COVID-19 case dynamics.

Because such Hawkes processes do not involve genetic informa-
tion, one may apply the model to a much larger collection of cases,
i.e. those for which a timestamp and spatial coordinates are avail-
able. Moreover, recent successes in scaling Hawkes process infer-
ence to a big data setting enable inference from observations
numbered in the high tens-of-thousands (Holbrook et al., 2021b;
Yuan et al., 2021). This ability to interface with an order of magni-
tude more cases represents a major benefit of the Hawkes process in
comparison to the Bayesian phylogenetic paradigm, but the tradeoff
is that conclusions drawn from a Hawkes process analysis are de-
void of explicit biological insight. It is possible for the model to attri-
bute self-exciting dynamics to nearby viral cases that are only
distantly related to the phylogenetic tree. Finally, these processes do
not immediately account for viral spread through large-scale trans-
portation networks (Brockmann and Helbing, 2013; Holbrook

et al., 2021a) but attribute events resulting from such contagion to a
‘background’ process.

In the following, we construct a Bayesian hierarchical model that
allows both modeling approaches to support each other. This model
(Fig. 1) learns phylogenetic trees that describe the evolutionary his-
tory of the subset of observations that yield genetic sequencing and
uses this history to inform the distribution of a latent relative rate or
productivity (Schoenberg, 2020; Schoenberg et al., 2019) for each
virus in this limited set. In turn, these virus-specific rates modify the
rate of self-excitation of a spatiotemporal Hawkes process describ-
ing the contagion of all viruses, sequenced or not. We use a
Metropolis-within-Gibbs strategy to jointly infer all parameters and
latent variables of our phylogenetic Hawkes process and overcome
the OðN2Þ computational complexity of the Hawkes process likeli-
hood by incorporating the modified likelihood in the hpHawkes
open-source, high-performance computing library (Holbrook et al.,
2021b) available at https://github.com/suchard-group/hawkes.
Within the same library, we also develop multiple parallel comput-
ing algorithms for the log-likelihood gradient and Hessian with re-
spect to the model’s virus-specific rates. Graphics processing units
(GPU)-based implementations of these gradient and Hessian calcula-
tions score 100-fold speedups over single-core computing and help
overcome quadratic complexity in the context of an adaptively pre-
conditioned Hamiltonian Monte Carlo (HMC; Neal, 2011). These
speedups prove useful in our analysis of 23 421 viral cases from the
2014 to 2016 Ebola outbreak in West Africa.

2 Materials and methods

We develop the phylogenetic Hawkes process and its efficient infer-
ence in the following sections. Importantly, our proposed hierarchic-
al model integrates both sequenced and unsequenced viral case data,
representing a significant and clear contribution insofar as:

1. the percentage of confirmed viral cases sequenced during an epi-

demic is often in the single digits (Wadman, 2021); and

2. previous phylogeographic models have failed to leverage add-

itional information provided by geolocated, unsequenced case

data.

We address this shortcoming by constructing a new hierarchical
model that both models all spatiotemporal data with a Hawkes pro-
cess (Section 2.1) and allows an inferred evolutionary history in the
form of a phylogenetic tree to influence dependencies between rela-
tive rates of contagion (Section 2.2) for the small subset of viral
cases for which genome data are available. We believe that this ap-
proach is altogether novel.

2.1 Spatiotemporal Hawkes process for viral contagion
Hawkes processes (Hawkes, 1971a,b, 1972, 2018) constitute a use-
ful class of inhomgeneous Poisson point processes (Daley and Jones,
2003) for which individual events contribute to an increased rate of
future events. Spatiotemporal Hawkes processes (Reinhart, 2018)
are marked Hawkes processes with spatial coordinates for marks
(Daley and Jones, 2003). We are interested in spatiotemporal
Hawkes processes with infinitesimal rate:

Table 1. Comparison of two probabilistic modeling paradigms within viral epidemiology, the combination of which represents a new tool

for Bayesian phylogeography

Traditional Bayesian phylogenetics Hawkes processes

Observational limit N in low thousands N in high tens-of-thousands

Biological insight Evolutionary history None

Genetic sequencing Required Not required

Spatiotemporal data Not required Required

Geographic spread Not modeled Modeled

Large-scale transport Does not induce bias Induces bias

Fig. 1. The phylogenetic Hawkes process relates the evolutionary history of a virus

to the rate at which subsequent viral cases occur nearby. (Left) A phylogenetic tree

characterizes the evolution of a viral strain. (Middle) A 1D Brownian motion ‘along

the tree’ describes the evolution of infinitesimal rates as a function of branch lengths

and tree topology (Section 2.2). Branch lengths influence this evolution insofar as

they dictate the length of time over which the individual rates evolve; tree topology

influences this evolution insofar as the end of a parent’s trajectory fixes the begin-

ning of the child’s trajectory. (Right) Virus-specific rates additively contribute to the

Hawkes process’ rate function for future cases (Section 2.1)
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kðx; tÞ ¼ lðxÞ þ nðx; tÞ ¼ lðxÞ þ
X
tn < t

gnðx� xn; t � tnÞ ;

where x 2 RD; t 2 Rþ and the subscript n indicates that the usual
triggering function gð�; �Þ takes on different forms depending on
some characteristic associated with event n. These non-negative,
monotonically non-increasing, event-indexed triggering functions
additively contribute to nð�; �Þ, the self-excitatory rate component,
and encourage this rate to increase after each observed event. Here,
lð�Þ is the background rate and only depends on spatial position x.
Conditioned on observations ðxn; tnÞ, n ¼ 1; . . . ;N, we specify the
rate components:

lðxÞ ¼ l0

sD
x

XN
n¼1

/
x� xn

sx

� �
I½x6¼xn � and

nðx; tÞ ¼ h0x
hD

X
tn < t

hn e�xðt�tnÞ/
x� xn

h

� �
;

where sx > 0 and h>0 are the background and self-excitatory spa-
tial lengthscales, l0 > 0 and h0 > 0 are the background and self-
excitatory weights, 1=x > 0 is the self-excitatory temporal length-
scale, /ð�Þ is the D-dimensional standard normal probability density
function, and the background rate’s indicator function prevents a
trivial maximum at sx ! 0 (Habbema et al., 1974; Robert, 1976).
The inclusion of hn > 0 for n ¼ 1; . . . ;N within the self-excitatory
rate marks a major departure from similar model specifications in
Holbrook et al. (2021b) and Loeffler and Flaxman (2018). These
‘degrees of contagion’ or ‘productivities’ (Schoenberg, 2020;
Schoenberg et al., 2019) allow different events to contribute differ-
ently to the overall self-excitatory rate of the process: the larger the
hn, the higher the rate directly following event n (Fig. 1, right).
Following the connection of the Hawkes process with exponential
triggering function to a discret-time SIR model (Rizoiu et al., 2018),
Bertozzi et al. (2020) refer to these quantities as a reproduction
number. In the following, we refer to hn as the event-specific, case-
or virus-specific rate for the nth event, case or viral observation.

Denoting h ¼ ðh1; . . . ; hNÞT , the likelihood of observing data
ðX; tÞ ¼ ððx1; t1Þ; . . . ; ðxN ; tNÞÞT is (Daley and Jones, 2003):

LðX; tjl0; sx; h0; h;x; hÞ ¼ exp �
ð

RD

ðtN

0

kðx; tÞdt dx

� �YN
n¼1

kðxn; tnÞ

:¼ e�KðtNÞ �
YN
n¼1

kn :

The choice of RD for integration domain is popular and often
necessary but assumes complete observation over the entirety of RD

(Schoenberg, 2013). The resulting integral may be written
(Appendix A):

KðtNÞ ¼ l0tN � h0

XN
n¼1

hnðe�xðtN�tnÞ � 1Þ :¼
XN
n¼1

Kn ;

leading to a log-likelihood of

‘ðX; tjl0; sx; h0; h;x;hÞ ¼ �KðtNÞ þ
XN
n¼1

log kn

¼
XN
n¼1

log ½
XN
n0¼1

ð
l0 I½xn 6¼xn0 �

sD
x

/
xn � xn0

sx

� �(

þ
h0hn0xI½tn0 < tn �

hD
e�xðtn�tn0 Þ/

xn � xn0

h

� �
Þ� �Kng

:¼
XN
n¼1

log
XN
n0¼1

knn0

 !
� Kn

" #
:¼
XN
n¼1

‘n :

(1)

Here, we use the following shorthand notations: Kn is the
additive contribution of the nth event to the likelihood’s integra-
tion term; knn0 refers to the additive contribution of the n0th event
to the rate function evaluated at the nth event kn ¼ kðxn; tnÞ; and
‘n is the overall additive contribution of the nth event to the log-

likelihood. We reference these formulas while outlining our infer-
ence strategy in Section 2.3 and detailing our massively parallel
algorithms for calculating the log-likelihood gradient and
Hessian with respect to event-specific rates h in Appendix B. We
describe our biologically modulated joint prior on event-specific
rates h1; . . . ; hN in Section 2.2.

2.2 Phylogenetic Brownian process prior on rates
We use standard Bayesian phylogenetics hierarchical approaches
(Suchard et al., 2003) to model a single molecular sequence align-
ment S containing sequences from M � N evolutionarily related
viruses. LetM denote the ordered index set with cardinality jMj ¼
M containing every number within the set f1; . . . ;Ng that corre-
sponds to an observed virus for which genome data are present. In
the following, we number the elements within M as
m1;m2; . . . ;mM. Moreover, we make use of the setMþ with cardin-
ality jMþj ¼ 2M� 1, satisfyingM�Mþ and containing elements
m1; . . . ;m2M�1. Our primary object of interest is the phylogenetic
tree G (Fig. 1, left) defined as a bifurcating, directed graph with M
terminal degree-1 nodes ð�m1

; . . . ; �mM
Þ that correspond to the tips of

the tree (or sequenced observations), M� 2 internal degree-3 nodes
ð�mMþ1

; . . . ; �m2M�2
Þ, a root degree-2 node �m2M�1

and edge weights
ðwm1

; . . . ;wm2M�2
Þ that encode the elapsed evolutionary time be-

tween nodes. Here, each wm communicates the expected number of
molecular substitutions per site, which is itself the product between
the real-time duration and the evolutionary rate arising from a mo-
lecular clock model. For example, we use a relaxed molecular clock
model (Drummond et al., 2006) that allows for substitution rates to
flexibly vary across branches (Section 3.2). One may either know G
a priori or endow it with a prior distribution parameterized by some
vector /. Suchard et al. (2001, 2018) develop the joint distribution
pðS;/;GÞ in detail.

We assume that the event-specific rates h defined within our
Hawkes model take the form (Fig. 1, middle):

hn ¼ hnðznÞ ¼ exp ðzn þ bT fðtnÞÞ zn 2 R ; n 2M
hn ¼ 1 n 62 M ;

�

and that the elements of vector z ¼ ðzm1
; . . . ; zmM

ÞT follow a
Brownian diffusion process along the branches of G (Cavalli-Sforza
and Edwards, 1967; Felsenstein, 1985; Lemey et al., 2010). Here,
fð�Þ is some fixed vector function and the inclusion of the linear
term bT fðtnÞ helps control for global trends resulting from extrinsic
events such as mass quarantine or travel restrictions. Under the
Brownian process, the latent value of a child node �c in tree G is nor-
mally distributed about the value of its parent node �paðcÞ with vari-
ance wc � r2, where r2 gives the dispersal rate after controlling for
correlation in values that are shared by descent through the phylo-
genetic tree G. We further posit that the latent value of the root node
�m2M�1

is a priori normally distributed with mean 0 and variance
s0 � r2. The vector z is then multivariate normally distributed Cybis
et al. (2015) and has probability density function:

pðz jVG;r2; s0Þ ¼ 2pr2ð Þ�M=2jVGj�1=2 exp � 1

2r2
zTV�1

G z

� �
; (2)

where VG ¼ fvnmg is a symmetric, positive definite, block-diagonal
M�M matrix with structure dictated by G. Defining dFðu; vÞ to be
the sum of edge-weights along the shortest path between nodes u
and v in tree G, the diagonal elements vmm ¼ s0 þ dFð�m2M�1

; �mm
Þ

are the elapsed evolutionary time between the root node and tip
node mm, and off-diagonal elements vnm ¼ s0 þ ½dFð�m2M�1

; �mn
Þ þ

dFð�m2M�1
; �mm

Þ � dFð�mn
; �mm

Þ�=2 are the evolutionary time period
between the root node and the most recent common ancestor of tip
nodes mn and mm.

2.3 Inference
Due to the complexity of the phylogenetic Hawkes process and the
large number of viruses we seek to model, we must use advanced
statistical, algorithmic and computational tools to infer the posterior
distribution:
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pðr2;G;/; l0; sx; h0; h;x;h; b jX; t; SÞ
/ LðX; tjl0; sx; h0; hðzÞ;x;hÞ � pðz jr2;GÞ � pðl0Þ � pðsxÞ
� pðh0Þ � pðxÞ � pðhÞ � pðbÞ � pðr2Þ � pðS;/;GÞ : (3)

We do so using a random-scan Metropolis-with-Gibbs scheme,
in which we compute key quantities with the help of adaptively pre-
conditioned HMC (Neal, 2011), dynamic programming and parallel
computing on cutting-edge GPUs.

2.3.1 Dynamic programming for phylogenetic diffusion quantities

We must evaluate pðz j r2;GÞ to sample G. The bottleneck within the
evaluation of Equation (2) is the ostensibly OðM3Þ matrix inverse
V�1
G , but Pybus et al. (2012) develop a dynamic programming algo-

rithm to perform the requisite computations in OðMÞ with parallel-
ized post-order traversals of G. We use this algorithm, which is
closely related to the linear-time algorithms of Freckleton (2012)
and Ho and An�e (2014), as all are examples of message passing on a
directed, acyclic graph (Cavalli-Sforza and Edwards, 1967; Pearl,
1982). Similar tricks render inference for / linear in M, and Fisher
et al. (2021) extend Pybus et al. (2012) to compute gradients with
respect to /. Finally, implementing these algorithms on GPUs would
lead to additional speedups (Suchard and Rambaut, 2009), but the
computational bottleneck we face when applying the phylogenetic
Hawkes process arises from the Hawkes process likelihood and its
gradients.

2.3.2 Massive parallelization for Hawkes model quantities

Sampling the Hawkes process parameters l0; sx; h0;x; h; b and
event-specific rates h requires evaluation of the likelihood
‘ðX; tjl0; sx; h0; h;x; hÞ or its logarithm. Unfortunately, the double
summation of Equation (1) results in an OðN2Þ computational com-
plexity that makes repeated likelihood evaluations all but impossible
for the number of observations considered in this paper. We there-
fore use the high-performance computing framework of Holbrook
et al. (2021b) to massively parallelize likelihood evaluations in the
context of univariate, adaptive Metropolis-Hastings proposals for
parameters l0; sx; h0;x, h and b. On the other hand, inference for
the M-vector z requires more than fast univariate proposals, so we
opt for HMC to sample from its high-dimensional posterior. Even in
high dimensions, HMC efficiently generates proposal states by simu-
lating a physical Hamiltonian system that renders the target poster-
ior distribution invariant. Here, we follow standard procedure and
specify the system with total energy:

Hðz; pÞ ¼ �log ðpðzÞ nðpjMÞÞ / �log pðzÞ þ 1

2
pTM�1p ;

where pðzÞ is the density of the marginal posterior for z; p is a
Gaussian distributed ‘momentum’ variable with density nðpjMÞ, and
M is the system mass matrix and the covariance of p. Within this
Newtonian framework, simulating from the posterior distribution
pð�Þ is analogous to simulating Hamiltonian dynamics that satisfy
the equations:

z
: ¼ @

@p
Hðz; pÞ ¼ 1

2
M�1p ; p

: ¼ � @

@z
Hðz;pÞ ¼ r log pðzÞ :

Here, we interpret z as the position of a physical object with vel-
ocity _z proportional to M�1p, the momentum divided by mass. In
the same way, the instantaneous change in momentum &pdot; is
proportional to the gradient of the potential energy (or the negative
log-posterior) with respect to the ‘position’ z. But, there is no free
lunch: simulation of the physical system requires repeated evalua-
tions of the log-likelihood gradient, and these evaluations may be-
come burdensome in big data contexts. We again follow standard
HMC procedure and use the leapfrog algorithm (Leimkuhler and
Reich, 2004) to integrate Hamilton’s equations. Setting � > 0 small,
at any time step s within the numerical discretization scheme we up-
date position and momentum according to the following rules:

pðsþ �=2Þ ¼ pðsÞ þ �

2
r log pðzðsÞÞ

zðsþ �Þ ¼ zðsÞ þ �M�1pðsþ �=2Þ
pðsþ �Þ ¼ pðsþ �Þ þ �

2
r log pðzðsþ �ÞÞ :

In practice, the step size � is a crucially important tuning param-
eter, but we use standard adaptation techniques (Rosenthal, 2011)

to avoid tedious hand-tuning. Unfortunately, the gradient of the
Hawkes process log-likelihood of Equation (1) with respect to h—a

key term when calculating r log pðzÞ—becomes computationally
onerous for large N and M. Recalling that Km is the additive contri-
bution of the mth event to the likelihood’s integration term and that

knm is the mth event’s additive contribution to the rate function eval-
uated at the nth event, the gradient with respect to a single event-

specific rate hm takes the form:

@‘

@hm
¼ @

@hm
�Km þ

XN
n¼1

log kn

 !
¼ � @Km

@hm
þ
X

tm < tn

1

kn

@knm

@hm

¼ h0 e�xðtN�tmÞ � 1ð Þ þ
X

tm < tn

1

kn

h0x
hD

e�xðtn�tmÞ/
xn � xm

h

� �
:

(4)

Given all observations and model parameters, one may compute

the gradient using this formula, but the summation and kn are both
of complexity OðNÞ. Thus, computing the entire vector @‘=@h ¼
ð@‘=@h1; . . . ; @‘=@hMÞT requires time OðNMÞ. Worse still, due to the
multiscale nature of the posterior for the relative rates (Fig. 4), we
find it necessary to precondition the Hamiltonian dynamics by speci-

fying a diagonal mass matrix with elements:

M�1
mm � �

@2‘

@h2
m

¼
X

tm < tn

1

k2
n

h2
0x

2

h2D
e�2xðtn�tmÞ/2 xn � xm

h

� �
: (5)

Specifically, we maintain a running average of Hessians calcu-
lated at a fixed interval and use this as our preconditioner M, thus
maintaining asymptotic unbiasedness of Monte Carlo estimates

(Haario et al., 2001). Just as with the gradient, the summation and
kn are both of complexity OðNÞ, and the resulting complexity for

the entire Hessian is OðNMÞ. To overcome these rate-limiting steps,
we develop massively parallel central processing unit (CPU) and
GPU implementations of both the gradient and the Hessian. In

Section B, Algorithms 1 and 2 detail both parallel implementations
of the gradient. Although our GPU-based implementations are fast-
est (Section 3.1), our CPU implementations are competitive, making

use of both multi-core processing and SIMD (single instruction, mul-
tiple data) vectorization (Holbrook et al., 2021a). Regardless of im-

plementation, all of our high-performance software remains freely
available for public use.

2.4 Software availability
We use the Bayesian evolutionary analysis by sampling trees
(BEAST) software package (Suchard et al., 2018), a popular tool

for viral phylogenetic inference that implements Markov chain
Monte Carlo (MCMC) methods to explore pðS;/;GÞ and
pðz j r2;GÞ (Cybis et al., 2015) under a range of evolutionary mod-

els. In writing this article, we have contributed to the open-
source, stand-alone library hpHawkes http://github.com/suchard-
group/hawkes for computing the spatiotemporal Hawkes process

log-likelihood (Equation 1), its gradient (Equation 4), and its
Hessian (Equation 5). hpHawkes integrates into BEAST with the

help of an application programming interface. Within hpHawkes,
we combine Cþþ code with which standard compilers generate
vectorized CPU-specific instructions and OpenCL kernels that

allow for GPU-specific optimization. Finally, we have used the
Rcpp package (Eddelbuettel and François, 2011) to make the

same massive parallelization speedups available to users of the R
programming language.
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3 Demonstration

3.1 Massive parallelization
Figure 2 shows benchmarking results for evaluating the Hawkes log-
likelihood gradient with respect to event-specific rates h

(Equation 4). For the GPU results, we use an NVIDIA Quadro
GV100, which has 5120 CUDA cores (at 1.13 GHz) and reaches an
(unboosted) 2.9 teraflops peak double-precision floating-point per-
formance (or 5.8 teraflops for fused operations such as fused
multiply-add). We use a Linux machine with two 26-core Intel Xeon
Gold processors (2.1 GHz) for CPU results. Each physical core sup-
ports two threads or logical cores, and the machine achieves a peak
performance of 874 gigaflops with double-precision floating point
enhanced with advanced vector extensions (AVX) vectorization
(again, double this for fused operations). Based on peak double-
precision floating-point operations, our a priori expectation is for
fully parallelized GPU-based gradient evaluations to be roughly 3.3
times faster than 104-threaded AVX evaluations on the CPU.

On the left of Figure 2, we compare relative efficiency for GPU
and various CPU implementations of the log-likelihood gradient and
Hessian for 25000 simulated data points using single-threaded AVX
computing (15.7 and 16.3 s per gradient and Hessian evaluations) as
baseline. Using streaming SIMD extension (SSE) or non-vectorized
single-threaded computing results in 1.5- and 2.2-fold slowdowns
for the gradient and 1.3- and 2.1-fold slowdowns for the Hessian.
Sticking with AVX processing, we see diminishing returns as we in-
crease the number of threads. For both the gradient and the Hessian,
the 14-, 54- and 104-thread AVX implementations are roughly 13,
33 and 41 times faster than single-threaded AVX. Agreeing with our
a priori expectations, the GPU implementation is 140.4 times faster
than single-threaded AVX and 3.5 times faster than 104-threaded
AVX for the gradient and 120.0 times faster than single-threaded
AVX and 2.9 times faster than 104-threaded AVX for the Hessian.
The right of Figure 2 demonstrates the OðN2Þ computational com-
plexity for the same gradient and Hessian evaluations by varying the
number of data points from 10000 to 90000. Although paralleliza-
tion does not overcome this quadratic scaling, it does reduce compu-
tational costs for finite observation counts.

3.2 2014–2016 Ebola outbreak in West Africa
During the 2014–2016 outbreak in Guinea, Sierra Leone and
Liberia, Ebola viral fever resulted in over 28 000 known cases and
11000 known deaths (World Health Organization, 2015). First
reports of the virus in Guinea emerged during March of 2014 (Baize

et al., 2014). At around the same time, viral cases with the same
Guinean origin (Gire et al., 2014) emerged in Sierra Leone and
Liberia. In May 2014, the virus crossed from Guinea to Kailahun,
Sierra Leone. From there, it spread to multiple counties of Liberia
and Guinea (Dudas et al., 2017), and the same strain reached
Freetown, the capital of Sierra Leone, by July 2014. In the fall of
2014, Sierra Leone and Liberia were detecting 500 and 700 new
cases a week. Only by the end of 2014 did case numbers begin to
abate in most areas due to control measures. By March of 2015 sus-
tained transmission of the virus only continued in western Guinea
and western Sierra Leone (Dudas et al., 2017). Figure 3 shows the
spatiotemporal distribution of the majority of known Ebola virus
cases during the epidemic. The right-hand side of Figure 3 is a
stacked histogram, displaying the relative contribution of sequenced
and unsequenced viral cases to the total case count.

Using our high-performance computing framework, we apply
the phylogenetic Hawkes process to the analysis of 23 421 viral
cases. Dudas et al. (2017) provide a total of 1610 cases furnishing
genomic sequencing, 1367 of which come with date and location
data (https://github.com/ebov/space-time). We supplement this
sequenced data with 21811 date and location pairs from unse-
quenced cases documented by the World Health Organization
(https://apps.who.int/gho/data/node.ebola-sitrep). The precision of
the spatial data is district or county level. To leverage spatial infor-
mation as much as practically possible within our Hawkes model,
we assume the locations follow a Gaussian distribution at district
population centroids and with variance guaranteeing a 95% prob-
ability of the case occurring within the circle of equal area to the dis-
trict and centered at the population centroid. We then integrate over
uncertainty with respect to these locations by periodically sampling
new locations according to the assumed Gaussian distribution
throughout the MCMC run and with a period of roughly 100 itera-
tions. That said, sensitivity analyses show that model inference is ro-
bust to fixing randomly generated locations for the entire MCMC
chain. We make the combined data and documentation for our en-
tire BEAST analysis available within the single file Final.xml and
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Fig. 2. Spatiotemporal Hawkes process log-likelihood gradient and Hessian calcula-

tions with respect to event-specific rates h with CPUs and GPUs. (Left)

Multiplicative speedups over single-threaded AVX vectorization for single-threaded

non-vectorized and SSE, multi-threaded AVX and many-core GPU processing for

25 000 randomly generated data points. (Right) Seconds per gradient and Hessian

calculations for multi-threaded AVX and GPU implementations from 10 000 to

90 000 data points

Fig. 3. Spatiotemporal distribution of 23 178 viral cases during the 2014–2016

Ebola outbreak in Guinea, Sierra Leone and Liberia. On the one hand, this number

consists of 1367 viral samples that yield RNA sequence data and interface directly

with the prior over phylogenetic trees. On the other hand, all 23 178 cases for which

spatiotemporal data are available—including 21 811 unsequenced cases—interface

with the Hawkes process likelihood. This leaves 243 sequenced cases for which spa-

tiotemporal data are not available that interface with the phylogenetic but not the

Hawkes process model

Fig. 4. The posterior distribution presents multiple challenges: it is high-dimension-

al; it takes on different scales for different parameters; it is multimodal in some

parameters; and it exhibits complex correlation structures between parameters.

(Left) Histogram and quartiles from 100 million MCMC samples for the ESS of all

1377 model parameters. (Middle) Multimodal marginal posterior for a single rela-

tive rate. (Right) Posterior correlations between 21 relative rates
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place this as well as other project scripts together at the repository
https://github.com/suchard-group/EBOVPhyloHawkes. In addition
to the software mentioned in the previous section, we make use of
the ggplot2 and ggmap R packages for data and results visualization
(Kahle and Wickham, 2013; Wickham, 2016).

For the phylogenetic prior specification pðS;/;GÞ, we follow the
phylogeographic analysis of Dudas et al. (2017) and use a mixture
of 1000 phylogenetic trees obtained as high-probability posterior
samples from their purely phylogenetic analysis of the 1610
sequenced viral samples. In that preceding Bayesian analysis, Dudas
et al. (2017) combine an HKYþC4 substitution model prior for mo-
lecular evolution (Hasegawa et al., 1985; Yang, 1994), a relaxed
molecular clock prior on rates (Drummond et al., 2006), a non-
parametric coalescent ‘Skygrid’ prior on effective population size dy-
namics (Gill et al., 2013) and a continuous time Markov chain refer-
ence prior for overall rate (Ferreira and Suchard, 2008). We assume
a priori that the background lengthscale sx follows a diffuse inverse
gamma distribution with Shape 1 and Scale 10, where distance units
are latitudinal and longitudinal degrees. An inverse gamma distribu-
tion with shape and scale parameters equal to 2 and 0.5 for both h
and 1=x encodes our beliefs that self-excitatory dynamics occur at
finer spatiotemporal scales, where years are the temporal units. We
upweight self-excitatory dynamics by giving h0 and l0 gamma priors
with shape parameters 1 and 2 and scale parameters 0.001 and 2, re-
spectively. We absorb s0 into r and place a tight inverse gamma
prior on 1=r with shape and scale parameters of 2 and 0.5. Finally,
we set fðtnÞ ¼ tn and place a normal prior on the univariate coeffi-
cient b with mean 0 and SD of 10. We find all parameters robust to
prior specification due to the large number of observations
considered.

We generate 100 million MCMC samples according to the rou-
tine outlined in Section 2.3 and discard the first 500000 as burn-in.
Using our parallel computing algorithms and a single NVIDIA
GV100 GPU (Section 3.1), the routine requires 6.77 h to generate 1
million samples and 28 days to generate all 100 million samples.
Figure 4 shows the distribution of effective samples sizes (ESS)
across all model parameters and illustrates some of the challenges
facing any MCMC routine for the phylognetic Hawkes model.
Namely, the posterior distribution is high-dimensional, multimodal,
multiscale and has complex correlation structures.

Table 2 shows posterior means and 95% highest posterior dens-
ity (HPD) credible intervals for the phylogenetic Hawkes process
parameters. The posterior mean for the spatial bandwidth sx of the
Hawkes background process is 194 km (147, 243), allowing the
model to incorporate and adapt to large scale geographic movement.
On the other hand, the Hawkes process self-excitatory spatial band-
width h has a posterior mean of 7.4 km (7.1, 7.6), indicating the
smaller local scale for which the model attributes viral contagion.
The self-excitatory temporal bandwidth 1=x has a posterior mean
of 29.8 days (28.5, 30.9), indicating the timescale for which the
model attributes the same viral contagion. The normalized self-
excitatory weight h0=ðh0 þ l0Þ indicates the proportion of events the
model attributes to self-excitatory (compared with background) dy-
namics and has a posterior mean of 0.96 (0.95, 0.97). The posterior
mean of the self-excitatory rate’s temporal trend coefficient b is
�2.22 (�2.37, �2.06) indicates that, for every additional year and

ceteris paribus, one should expect a multiplicative decrease of 1�
exp ð�2:22Þ � 100 � 90% to the process self-excitatory rate. In this
way, the model adjusts for downward trends arising from epidemio-
logical control (e.g. mass quarantine and travel restrictions) and
controls for these factors when inferring virus-specific relative rates.

Next, we consider posterior inference of the virus-specific rates h

for those viral observations that provide RNA sequences. When
interpreting these results, it is important to understand that the
phylogenetic Hawkes process implicitly assumes that such samples
spark nearby contagion as described by spatial and temporal band-
widths h and 1=x. Recall that the posteriors for these two parame-
ters concentrate at over 7 km and 4 weeks, respectively. Figure 5
depicts the relationship between posterior mean values of h and the
spatiotemporal distribution of corresponding viruses. Since these
rates represent multiplicative factors of the global self-excitatory
weight h0, a null value would be 1. Posterior means range from ap-
proximately �2.5 to 7.5 and increasingly vary as a function of time.
As one might expect, the highest rates appear near or within larger
clusters. Thanks to the negative temporal trend coefficient b and the
increase of uncertainty with time, larger rate values do obtain for
some viral cases occurring in 2015, despite following after peak epi-
demic. Figure 6 features posterior means and 95% intervals for the
same virus-specific rates. Only a small subset of 183 rate intervals
does not include 1. Of these, 177 have lower bound >1. We

Table 2. Posterior means and 95% HPD credible intervals from the application of the phylogenetic Hawkes process to the 2014–2016 Ebola

outbreak in Guinea, Sierra Leone and Liberia

Posterior mean

Hierarchical model module Model parameter Symbol (95% HPD credible intervals) Unit

Hawkes process Background spatial lengthscale sx 194 (147, 243) km

Self-excitatory temporal lengthscale 1=x 29.8 (28.5, 30.9) days

Self-excitatory spatial lengthscale h 7.37 (7.13, 7.62) km

Normalized self-excitatory weight h0=ðh0 þ l0Þ 0.96 (0.95, 0.97) —

Temporal trend coefficient b �2.22 (�2.37, �2.06) —

Phylogenetic diffusion SD r 51.0 (46.4, 55.7) log rate
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Fig. 5. Hawkes model posterior mean rates h for the 1367 (of 1610) RNA-

sequenced viral samples for which date/location data are available. Unsurprisingly,

the largest relative rates occur within or nearby major clusters of events. Adjusting

for downward trends in case data with a negative coefficient b (Table 2) allows de-

tection of higher relative rates after peak outbreak (late 2014) including a jump in

infections mid-2015 (Figure 3)
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Fig. 6. 95% credible intervals and posterior means for virus-specific rates h corre-

sponding to the 1367 sequenced viruses that come with date/location data and

therefore appear in the Hawkes process module. We call those 183 intervals which

do not include 1 ‘significant’ and color the 177 intervals that are above 1 red
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interpret all 183 of the corresponding viruses as having statistically
significantly increased or decreased contagiousness.

Finally, Figure 7 shows how these posterior rates organize as a
function of the inferred posterior maximum clade credibility tree G.
Generally speaking, shorter branch lengths indicate larger effective
populations of viruses, whereas larger branch lengths indicate
smaller. For example, the structure of the bottom subtree reflects this
intuition as branches are short with many splits during peak outbreak
in the second half of 2014 but become mostly long in late 2014 and
the remainder of 2015. According to the phylogenetic Brownian pro-
cess model outlined in Section 2.2, virus-specific rate values are more
highly correlated to one another when closely located to one-another
on the phylogenetic tree. It is plausible that these correlations allow
the phylogenetic Hawkes model to infer higher rates for some strains
that survive late into the epidemic despite dropping case counts. The
model attributes some of the highest values to strains appearing in
Coyah, Conakry and Kindia, Guinea, in late 2014 and early 2015.
Interestingly, the model also attributes its lowest values to cases in
Kono, Sierra Leone, in early 2015. Taken together, Figures 6 and 7
may provide helpful leads for epidemiologists searching for variants
with heightened relative rates of contagion.

4 Discussion

We propose the phylogenetic Hawkes process, a Bayesian hierarch-
ical model that relates viral spatial contagion to molecular evolution
by uniting the two epidemiological paradigms of self-exciting point
process and phylogenetic modeling. Due to difficulties in scaling the
model to larger numbers of observations, we advance a computing
strategy that combines HMC, dynamic programming and massive
parallelization for key inferential bottlenecks. Finally, we apply our
novel model and high-performance computing framework to the
analysis of over 23000 viral cases arising from the 2014 to 2016
Ebola outbreak in West Africa, and Ebola strains and subtrees with
plausibly higher degrees of contagiousness reveal themselves.

Unfortunately, the current model will fail when applied to the
analysis of a global pandemic due to the dominant role of non-local,
large-scale transportation networks in propagating viral spread
(Holbrook et al., 2020, 2021a). We are particularly interested in
developing extensions to the phylogenetic Hawkes process that le-
verage recent advances in scaling high-dimensional multivariate
Hawkes processes (Nickel and Le, 2020) and applying the resulting
multivariate phylogenetic Hawkes process to the analysis of global
pandemics. In this context, each additional dimension will represent
an additional country or province. Prodigious computational chal-
lenges are inevitable, and we suspect that non-trivial GPU imple-
mentations will be necessary for big data applications.

Moving beyond inference, a major question is whether the
phylogenetic Hawkes process can be useful for prediction of spatial
contagion and dynamics. Here, recent neural network extensions of

the Hawkes process might prove useful (Mei and Eisner, 2017;
Zhang et al., 2020; Zuo et al., 2020), but it is unclear what forward
simulation of phylogenetic branching dynamics would look like in

the context of a Hawkes process. Moreover, generating samples
from the posterior predictive distribution of a Hawkes process

would be extremely time consuming when one is conditioning on
millions of posterior samples. To work around this, one could per-
haps parallelize over fixed parameter settings the algorithm of

Dassios and Zhao (2011) for simulating Hawkes processes when the
temporal triggering function is exponential. Such an implementation

would require efficient use of parallel pseudo-random number gen-
erators (Salmon et al., 2011).

More broadly, the phylogenetic Hawkes process is a single contri-
bution to the immense scientific project surrounding surveillance of
viral populations, inference of viral evolutionary histories and predic-

tion of viral spread. Due to the inherent difficulty of this challenge, we
imagine our model will be most useful when used in conjunction with
other epidemiological tools, mathematical models and expert intensive

lab work. That said, we believe the phylogenetic Hawkes process rep-
resents a major step toward automated, holistic and data-centered epi-

demiological modeling insofar as it fully leverages genomic and
spatiotemporal data obtained from both sequenced and unsequenced
viral cases. This joint modeling approach stands in contrast to other

phylogenetic modeling approaches that also attempt to recover phylo-
genetically localized measures of contagiousness but do not leverage

unsequenced case data. For example, Łuksza et al. (2014) combine
summary statistics of clade growth with birth–death models to infer
clade-specific reproduction numbers but analyze only 81 sequenced

cases and no unsequenced cases from the early 2014 Ebola outbreak.
On the one hand, the birth–death model allows one to obtain readily

interpretable clade-specific reproduction numbers. On the other hand,
the phylogenetic Hawkes model allows rates to vary continuously be-
tween and within clades. Similarly, Stadler et al. (2014) and Volz and

Pond (2014) apply phylogenetic compartmental models to analyze
<80 sequenced cases and no unsequenced cases. The fact that these

analyses (Łuksza et al., 2014; Stadler et al., 2014; Volz and Pond,
2014) do not take spatial information into account makes it difficult to
compare certain results with those from the phylogenetic Hawkes pro-

cess analysis. For temporal measures, however, we do infer a self-
excitatory lengthscale 1=x with 95% HPD credible interval of (28.5,
30.9) days, which is marginally consistent with Stadler et al.’s (2014)

95% HPD credible intervals of (2.11, 23.20) days for the incubation
period and (1.24, 6.98) days for the infectious period.

These comparisons raise a broader theoretical question: can the
phylogenetic Hawkes process provide phylogenetically localized

basic or effective reproduction numbers and, as a result, become
more readily interpretable in broader science? Rizoiu et al. (2018)
show that the rate of events in an epidemiological SIR model is equal

to that of their finite-population Hawkes model. Accordingly, cru-
cial next steps in the development of the phylogenetic Hawkes pro-

cess framework are the incorporation of finite-population dynamics
as well as the extension of the temporal model from Rizoiu et al.
(2018) to the spatiotemporal regime.
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Appendix A A1 The likelihood integral with event-specific
rates

Without loss of generality, we consider the temporal Hawkes pro-

cess with constant background rate. To compute the likelihood

(Equation 1), we must calculate the integral:

KðtNÞ ¼
Ð tN

0 kðtÞ dt ¼
Ð tN

0 lþ h0

P
tn < t hnxe�xðt�tnÞ

� �
dt

¼
Ð t1

0 l dt þ
XN�1

n¼1

ðtnþ1

tn

lþ h0

X
tn < t

hnxe�xðt�tnÞ
� �

dt

¼ l tN þ h0x
XN�1

n¼1

ðtnþ1

tn

Xn

n0¼1

hn0e
�xðt�tn0 Þ dt

¼ l tN þ h0x
XN�1

n¼1

Xn

n0¼1

hn0

ðtnþ1

tn

e�xðt�tn0 Þ dt

¼ l tN � h0

XN�1

n¼1

Xn

n0¼1

hn0 ðe�xðtnþ1�tn0 Þ � e�xðtn�tn0 ÞÞ ;

and we further simplify the double summation in the following.

Claim 1. The temporal Hawkes process with rate function:

kðtÞ ¼ lþ h0

X
tn < t

hnxe�xðt�tnÞ (6)

admits the integral

KðtNÞ ¼
ðtN

0

kðtÞ dt ¼ l tN � h0

XN�1

n¼1

hnðe�xðtN�tnÞ � 1Þ : (7)

PROOF. Proceeding by induction, the assertion is trivial for N¼1.

If it is true for some N>0, this implies that:

XN�1

n¼1

Xn

n0¼1

hn0 ðe�xðtnþ1�tn0 Þ � e�xðtn�tn0 ÞÞ ¼
XN�1

n¼1

hnðe�xðtN�tnÞ � 1Þ :

It follows that:

KðtNþ1Þ ¼ ltNþ1 � h0

XN
n¼1

Xn

n0¼1

hn0

�
e�xðtnþ1�tn0 Þ � e�xðtn�tn0 Þ

�

¼ lðtNþ1 � tNÞ � h0

XN
n0¼1

hn0

�
e�xðtNþ1�tn0 Þ � e�xðtN�tn0 Þ

�

þ ltN � h0

XN�1

n¼1

Xn

n0¼1

hn0

�
e�xðtnþ1�tn0Þ � e�xðtn�tn0 Þ

�

¼ lðtNþ1 � tNÞ � h0

XN
n0¼1

hn0

�
e�xðtNþ1�tn0 Þ � e�xðtN�tn0 Þ

�
þ KðtnÞ

¼ lðtNþ1 � tNÞ � h0

XN
n0¼1

hn0

�
e�xðtNþ1�tn0 Þ � e�xðtN�tn0 Þ

�

þ ltN � h0

XN�1

n¼1

hn

�
e�xðtN�tnÞ � 1

�

¼ ltNþ1 � h0

XN
n¼1

hn

�
e�xðtNþ1�tnÞ � e�xðtN�tnÞ

�

� h0

XN�1

n¼1

hn

�
e�xðtN�tnÞ � 1

�

¼ ltNþ1 � h0

XN
n¼1

hn

�
e�xðtNþ1�tnÞ � 1

�
;

thus completing the proof.

Algorithm 1 Parallel evaluation of Hawkes process log-likeli-

hood gradient: Makes use of multiple CPU cores and loop

vectorization to calculate Hawkes process log-likelihood gra-

dient with respect to event-specific rates h. When using dou-

ble-precision floating point, this algorithm may use either

SSE or AVX vectorization to make J¼2- or 4-long jumps.

We denote the number of CPU cores as B. Symbols ‘, k and

K appear in Equations (1) and (4).

1: Compute rates k1; . . . ; kN:

a: parfor b 2 f1; . . . ;Bg do

b: if b 6¼ B then

c: Upper bbN=Bc
d: else

e: Upper dN=Be
f: end if

g: for n 2 fðb� 1ÞbN=Bc þ 1; . . . ;Upperg do

h: copy xn, tn to cache

i: knn  0 " vector of length J

j: n0  1

k: while n0 < N do

l: J minðJ;N � n0Þ
m: copy xn0 :ðn0þJÞ, tn0 :ðn0þJÞ to cache

n: Dnn0 : Dnn0 :ðn0þJ�1Þ  ðxn � xn0 Þ : ðxn � xn0þJ�1Þ
" vectorized subtraction

o: calculate dnn0 : dnðn0þJ�1Þ " vectorized multiplication

p: calculate knn0 : knðn0þJ�1Þ " vectorized evaluation

q: knn  knn þ knn0 : knðn0þJ�1Þ " vectorized addition

r: n0  n0 þ J

s: end while

t: end for

u: end parfor

2: Compute M gradients @‘
@hn

:

a: parfor b 2 f1; . . . ;Bg do

b: if b 6¼ B then

c: Upper bbM=Bc
d: else

e: Upper dM=Be
f: end if

g: for n 2 fðb� 1ÞbM=Bc þ 1; . . . ;Upperg do

h: copy xn, tn to cache

i: @‘
@hn
 0

j: n0  1

k: while n0 < N do

l: J minðJ;N � n0Þ
m: copy xn0 :ðn0þJÞ; tn0 :ðn0þJÞ to cache

n: Dnn0 : Dnn0 :ðn0þJ�1Þ  ðxn � xn0 Þ : ðxn � xn0þJ�1Þ
" vectorized subtraction

o: calculate dnn0 : dnðn0þJ�1Þ " vectorized

multiplication

p: calculate

e�xðtn0�tnÞ/ dnn0
h

� �
: e�xðtn0þJ�1�tnÞ/

dnðn0þJ�1Þ
h

� �
" vectorized

evaluation

q: for j 2 n0; . . . ; n0 þ J � 1 do

r: @‘
@hn
 @‘

@hn
þ I½tn < tj �

1
kj

@kjn

@hn

s: end for

t: n0  n0 þ J

u: end while

v: @‘
@hn
 @‘

@hn
þ h0 e�xðtN�tnÞ � 1ð Þ

w: end for

x: end parfor
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Appendix B

B1 Parallelized gradient algorithms

Algorithms 1 and 2 present instructions for computing the Hawkes

process log-likelihood gradient (Equation 4) with respect to the M-

vector h of event-specific rates. Figure 2 shows resulting speedups

for both Algorithms (1) and (2) on a CPU and GPU, respectively.

Appendix C

C1 Data and modules

Figure 8 shows the number of observations that interface with the

phylogenetic and Hawkes modules of the phylogenetic Hawkes pro-

cess model for the Ebola virus analysis of Section 3.2.

Algorithm 2 Parallel evaluation of Hawkes process log-likeli-

hood gradient: Computes the log-likelihood gradient with re-

spect to event-specific rates h using multiple levels of parallel-

ization on a GPU. In this article, we specify B¼128 for the

size of the GPU work groups. Symbols ‘, k and K appear in

Equations (1) and (4).

1: Compute rates k1; . . . ; kN:

a: parfor n 2 f1; . . . ;Ng do

b: copy xn, tn to local " B threads

c: parfor N0 2 f1; . . . ; bN=Bcg do

d: n0  N0

e: knN0  0

f: while n0 < N do

g: copy xn0 ; tn0 to local " B threads

h: Dnn0  xn � xn0 " vectorized subtraction

i: calculate dnn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Dnn0
	Dnn0

p
" vectorized

multiplication

j: knN0  knN0 þ knn0 " knn0 a function of dnn0 ,

tn and tn0

k: n0  n0 þ B

l: end while

m: end parfor

n: kn  
P

N0 knN0 " binary tree reduction

on chip

o: end parfor

2: Compute M gradients @‘
@hn

:

a: parfor n 2 f1; . . . ;Mg do

b: copy xn, tn to local " B threads

c: parfor N0 2 f1; . . . ; bN=Bcg do

d: n0  N0

e: @‘
@hn

� �
N0
 0

f: while n0 < N do

g: copy xn0 ; tn0 to local " B threads

h: Dnn0  xn � xn0 " vectorized subtraction

i: calculate dnn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Dnn0
	Dnn0

p
" vectorized

multiplication

j: @‘
@hn

� �
N0
 @‘

@hn

� �
N0
þ I ½tn < tn0 �

1
kn0

@kn0n
@hn

k: n0  n0 þ B

l: end while

m: end parfor

n: @‘
@hn
 
P

N0
@‘
@hn

� �
N0

" binary tree reduction on

chip

o: @‘
@hn
 @‘

@hn
þ h0 e�xðtN�tnÞ � 1ð Þ

p: end parfor

Phylogenetic module Hawkes module

1,610 sequenced cases 23,178 cases 
w/ location+dates

21,811 unsequenced 
w/ location+dates

1,367 sequenced 
w/ location+dates

243 sequenced 
w/o location+dates

Phylogenetic Hawkes process

23,421 total cases

Fig. 8. The modules of the hierarchical model and the distribution of the data that

interface with them
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