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Abstract

Calculation of the log-likelihood stands as the computational bottleneck for many statistical phylogenetic algorithms.
Even worse is its gradient evaluation, often used to target regions of high probability. Order O(N)-dimensional gradient
calculations based on the standard pruning algorithm require O(N?) operations, where N is the number of sampled
molecular sequences. With the advent of high-throughput sequencing, recent phylogenetic studies have analyzed
hundreds to thousands of sequences, with an apparent trend toward even larger data sets as a result of advancing
technology. Such large-scale analyses challenge phylogenetic reconstruction by requiring inference on larger sets of
process parameters to model the increasing data heterogeneity. To make these analyses tractable, we present a
linear-time algorithm for O(N)-dimensional gradient evaluation and apply it to general continuous-time Markov pro-
cesses of sequence substitution on a phylogenetic tree without a need to assume either stationarity or reversibility. We
apply this approach to learn the branch-specific evolutionary rates of three pathogenic viruses: West Nile virus, Dengue
virus, and Lassa virus. Our proposed algorithm significantly improves inference efficiency with a 126- to 234-fold increase
in maximum-likelihood optimization and a 16- to 33-fold computational performance increase in a Bayesian framework.

Key words: linear-time gradient algorithm, random-effects molecular clock model, Bayesian inference, maximum

likelihood.

Introduction

Advances in the portability, accuracy, and cost-efficiency of
genome sequencing technology (Quick et al. 2016) are gen-
erating genetic data at an ever-increasing pace, overwhelming
many key computational tools for molecular analysis. The
enormity of modern data sets presents a general challenge
in molecular evolution, but the problem is particularly press-
ing in infectious disease research.

The ability to collect and sequence pathogen genomes
in real time requires the development of novel statistical
methods that are able to process the sequences in a timely
manner and produce interpretable results to inform na-
tional public health organizations, rather than act as a bot-
tleneck to the epidemiological response workflow.
Coupling such methods with highly efficient computing
is key to rapid dissemination of outbreak analysis results
to make global health decisions focused on intervention
strategies and disease control. Molecular phylogenetics has

become an essential analytical tool for understanding the
complex patterns in which rapidly evolving pathogens
propagate throughout and between countries, owing to
the complex travel and transportation patterns evinced
by modern economies (Pybus et al. 2015), along with other
factors such as increased global population and urbaniza-
tion (Bloom et al. 2017). Of the statistical paradigms
employed in this domain, likelihood-based inference is by
far the most dominant because of its ability to incorporate
complex statistical models while offering accurate tree re-
construction under a wide range of evolutionary scenarios
(see, e.g, Ogden and Rosenberg 2006). These likelihood-
based approaches require repeated evaluation of the ob-
served data likelihood function and its gradient and there-
fore computational performance is heavily dependent on
data scale. As a result, and yet despite their lower accuracy,
faster heuristics often substitute for likelihood-based meth-
ods in scenarios where a timely response is essential.
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Felsenstein’s pruning algorithm (Felsenstein 1973, 1981)
makes the observed data likelihood in phylogenetics com-
putationally tractable. The observed molecular sequences at
the tips evolve on the phylogenetic tree according to a
continuous-time Markov chain (CTMC) with discrete states.
The pruning algorithm marginalizes over all possible latent
states of the CTMC at internal nodes and calculates the
probability of the observed sequence data through a post-
order tree traversal, that visits all nodes once in a
descendant-to-parent fashion that works its way up to the
root starting from the tips. This traversal requires O(N)
operations for each likelihood evaluation, where N is the
number of sampled molecular sequences. For a CTMC
with discrete states, one can calculate the first derivative
of the likelihood by substituting the transition probability
matrix with its derivative matrix into the pruning algorithm
(Kishino et al. 1990; Adachi and Hasegawa 1996; Yang 2000;
Bryant et al. 2005; Kenney and Gu 2012). This pruning-based
gradient calculation requires the same computational effort
as the likelihood evaluation for a parameter on a given
branch, i.e, O(N), but costs O(N?) operations to calculate
with respect to (w.r.t.) parameters pertaining to all branches.
Both maximum-likelihood and Bayesian inference are pop-
ular frameworks for inferring the phylogeny and its related
evolutionary parameters, requiring the same observed data
likelihood to be estimated w.r.t. the parameter space.
Parameters of interest include the topology of the evolu-
tionary tree, branch lengths, parameters within the infinites-
imal generator matrix that describes the CTMC as well as
mixture model parameters that describe evolutionary pro-
cesses such as among-site rate heterogeneity (Yang 1994)
and varying rates between partitions (Yang 1996; Shapiro
et al. 2006).

Owing to the complexity of the phylogenetic likelihood
surface (see, e.g, Sanderson et al. 2015), maximum-likelihood
frameworks employ nonlinear optimization to find the
maximum-likelihood estimate (MLE) for model parameters.
Importantly, the computations required to find the MLE dif-
fer greatly between parameters, as certain “local” parame-
ters—often specific to a single branch or a subset of
branches—only require a (small) part of the likelihood func-
tion to be re-evaluated whereas other “global” parameters—
typically the parameters of the CTMC process—require a
complete re-evaluation. In addition to the global optimiza-
tion routine that re-evaluates the complete likelihood when
proposing new parameter values, maximum-likelihood soft-
ware packages such as RAXML (Stamatakis et al. 2005) and
GARLI (Zwickl 2006) incorporate a local optimization routine
that only optimizes a few branch-specific parameters—for
example, in the vicinity of a recent topological change—while
keeping all other parameters fixed. Although both applica-
tions adopt pruning-based algorithms for gradient calcula-
tions, the computational cost of local optimization routines
is roughly only O(N), which they achieve by optimizing only
O(1) number of parameters, for example, the three branch
lengths connecting the internal node that is the target of a
tree rearrangement operation. An additional advantage of
such local routines is the possibility to perform multiple
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evaluations of branch-specific derivatives in parallel, condi-
tional on the remainder of the tree not changing.

Bayesian phylogenetic inference packages combine prior
knowledge with the (observed data) likelihood into a joint
density proportional to the posterior and, as such, attempt to
estimate posterior distributions for all parameters of interest.
Despite its great success for incorporating complex statistical
models (see, e.g, Huelsenbeck et al. 2001), Bayesian phyloge-
netic inference remains computationally intensive. The com-
putational cost of the gradient evaluation prevents Bayesian
phylogenetics from benefiting from more efficient gradient-
based samplers, such as the Hamiltonian Monte Carlo (HMC)
sampler (Neal 2011). In summary, both maximum-likelihood
and Bayesian implementations of phylogenetic modeling
stand to benefit from faster calculations of the gradient.

We here propose an O(N) algorithm for calculating the
gradient w.r.t. all branch-specific parameters by complement-
ing the postorder traversal in the pruning algorithm with its
corresponding preorder traversal. The algorithm thus extends
the pioneering work of Schadt et al. (1998) to general CTMCs
(homogeneous or not) while not assuming stationarity or
reversibility. We apply our proposed algorithm to study the
evolutionary rates of viral sequences that we model with a
random-effects clock model that combines both fixed- and
random-effects when accommodating evolutionary rate var-
iation (Bletsa et al. 2019). We show that the proposed ap-
proach significantly improves inference efficiency of the
branch-specific evolutionary rates under both maximum-
likelihood and Bayesian frameworks.

New Approach

In this section, we define necessary notation for deriving the
gradient algorithm. We then illustrate the likelihood calcula-
tion through the postorder traversal as in the pruning algo-
rithm and the update of the postorder partial likelihood
vectors. We derive a new partial likelihood vector at each
node and its update through a preorder traversal. We expand
the likelihood at any node as the inner product of its post-
and preorder partial likelihood vectors. Finally, we derive the
O(N)-dimensional gradient using the two partial likelihood
vectors at all nodes.

Notation

Consider a phylogeny F with N tips and N—1 internal nodes.
Assume that the root node is on the top and the tip nodes
are at the bottom of F. We denote the tip nodes with num-
bers 1,2, ..., N and the internal nodes with numbers N + 1
N+ 2,...,2N — 1 where the root node is fixed at 2N — 1.
Any branch on F connects a parent node to its child node
where the parent node is closer to the root. We denote pa(i)
as the parent node of node i. We refer to a branch by the
number of the child node it connects. On F, we model the
sites in the sequence alignment as independent and identi-
cally distributed such that they arise from conditionally inde-
pendent CTMCs acting along each branch. Depending on the
state space of the CTMCs, a site can be a single (nucleotide)
column or multiple consecutive columns that contain a
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Fic. 1. Schematic of a 3-taxon tree. The observed data at a site Y
= (Y1, Y2, Y3)" are character states at the tips of the tree. The latent
states Y, and Ys are at internal nodes of the tree. We divide the
observed data Y into two disjoint sets with Y4 = {Y;,Y; } and
Y4 = {Y3} to help set up the corresponding post- and preorder
partial likelihood vectors at internal node 4. We further color the
branches to show the update of the two partial likelihood vectors
atinternal node 4 such that red branches correspond to the update of
the postorder partial likelihood vector and blue branches correspond
to the update of the preorder partial likelihood vector. RR

codon (or encode for an amino acid) or even the entire

sequence.
Suppose we have observed (at tips) and latent (at internal
nodes) discrete evolutionary characters Y; fori = 1,...,2N

—1 at a site. Character Y; has m possible states (e.g, m = 4 for
nucleotide substitution models, m = 20 for amino acid sub-
stitution models and m = 61 for codon substitution models
that exclude the stop-codons). Let b; denote the branch
length of branch i. Let r; denote the evolutionary rate on
branch i and t; denote the real time of node i. Then
bi = ri(ti — tpa(i))- For branch i with CTMC infinitesimal
rate matrix Q; the transition probability matrix is
P,=eWi letm=[P(Yon.1=1),P(Yon.1=2),...,P
(Yon—1 = m)}/ denote the state distribution at the root
node (not necessarily the stationary distribution of the
CTMGs).

The evolutionary rates and chronological times appear
implicitly in the likelihood function through the branch
lengths. This implicitness poses an inference challenge for
molecular dating, also known as divergence time estimation.
Having samples with different sampling times, such as serially
sampled viral sequences or fossil information, supplements
additional time anchors for calibration. Improvement on
characterizing the other confounding factor, the evolutionary
rates, relies on the development of more biologically plausible
clock models that describe the rate changes on the tree.
However, such models come at the cost of having to infer
many highly correlated parameters that can be computation-
ally demanding for large data sets (see Inferring Evolutionary
Rate Variation section for more detail).

To set up the post- and preorder partial likelihood vectors,
we further divide the observed characters Y = {
Yi,1 < i < N} at tips into two disjoint sets w.r.t. any
node in F. Let Y|;; denote the observed characters at the

tip nodes descendant of node i. Let Yfj = Y \ Y|; denote
the observed characters at the tip nodes not descendant from
node i. Finally, let ¢ = {F,r;, b;, t;,Q;; Vi} collect all model
parameters. The length m postorder partial likelihood vector
p; of node i at a site has the jth element being
(p;); = P(Y|j|Yi =j)- When i is a tip node, P(Y;||Y; = j)
=1y for j=1,2,...,m. For partially observed and
missing data at the tip node, one can modify the postorder
partial likelihood vector to reflect this information
(Felsenstein 1981). Similarly, the preorder partial likelihood
vector q; of node i has the jth element being
(q,-)j = P(Y; =j,Yfj)). For the root node, Ypn_1] = &,
and the preorder partial likelihood vector is the same as
the state distribution (i.e, q,y_; = 7).

Likelihood

The likelihood is the marginal probability of the observed
discrete characters at the tip nodes that sums over all possible
latent characters at the internal nodes:

P(Y) = ZYN“ EYN+Z .. ZYZN—1 P(Y,y) and

IN-2 (1)
P(Y,y) = P(Yn_1) H P(Yj[Ypagj))

=1

where the summation at internal nodes are w.r.t. all possible
latent states. We omit the conditioning on the parameters ¢
above and in later derivations to save space. We use the
example phylogenetic tree in figure 1 with three tip nodes
and two internal nodes to demonstrate the likelihood calcu-
lation. The observed data (at a site) in figure 1 are
Y = {Y3,Y,, Y3}. And, one obtains the likelihood of the ob-
served data by marginalizing over y = {Yy, Ys}.

Postorder Traversal

The pruning algorithm is a dynamic programming algorithm
that calculates equation (1) through postorder traversal
(Felsenstein 1973, 1981). The postorder traversal visits every
node on the tree in a descendent node first fashion. For ex-
ample, two possible postorder traversals for the example tree
in figure 1 are 1—-2—=3—-4—5 or
1 — 2 — 4 — 3 — 5. Using the latter, the decomposition:

P(Y)= Dy, P(Ys)[Doy, P(Ya|Ys)P(Y1[Y4)P(Y2|Ys)]
P(Y3]Ys)

)
shows how the pruning algorithm separates the grand sum in
equation (1) into intermediate steps at the internal nodes for
the example phylogenetic tree. With the postorder partial

likelihood vector and the transition probability matrices,
the matrix-vector representation of equation (2) is:

P(Y) = ' [P4(P1p,°P2p,) Psps), (3)

where ° denotes the element-wise multiplication.

Only postorder partial likelihood vectors at the tip nodes
appear explicitly in equation (3). The recursive update for the
postorder partial likelihood vector p,, at internal node k given
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the postorder partial likelihood vectors p; and p; at its two
descendent nodes i and j (i.e, pa(i) = pa(j) = k) is implicit
in equation (3):

P« = Pip°P;p;. (4)

Again, for the update of the postorder partial likelihood
vector at internal node 4 in figure 1, k=4, i=1, j=2, and
P; = P(Y|4|Y4s) = P1p,°P2p,. We color the branches rele-
vant to this update red.

The postorder traversal updates all postorder partial like-
lihood vectors up to the root node. At the end of the tra-
versal, the likelihood is just the inner product of the state
distribution vector with the postorder partial likelihood vec-
tor at the root node.

P(Y> = Z[P(YzN—1 :j)P<YL2N—1J|Y2N—1 :J)]
j=1
= 'Pon_r- (5)

In the next section, we expand the likelihood as the inner
product at any node of its post- and preorder partial likeli-
hood vectors. In fact, this expansion is obvious for the root
node because the preorder partial likelihood vector at the
root node is just the state distribution vector and equation
(5) becomes P(Y) = q}y_;Pon_1- Further, the expansion
enables us to derive the linear-time algorithm that calculates
all branch-specific derivatives at once.

Preorder Traversal

The preorder traversal starts from the root node, where
q,n—1 = T, and updates all remaining preorder partial likeli-
hood vectors by visiting them in the reverse order of the
postorder traversal. Assume that we have calculated all post-
order partial likelihood vectors and consider recursively inter-
nal node k with its two immediate descendent nodes i and .
The preorder partial likelihood vector for descendent node i
falls out as:

P(YHY ) ZY,( (Y,',Yk,Y“(“,YUJ)

=y, PYilYOP(Y ;) [Y) P(Yk, i)

=2y, POl 2y, PO V)P YGIYOIP (Vi Y ),
(6)

since P(Y|;|Y;) and P(Yy,Y[y) are already known. The
matrix-vector representation of equation (6) is:

q, = P,{[Qko(Pij)]- ™)

The derivation of the preorder partial likelihood vector for
node j is similar. Use figure 1 as an example and consider the
update of the preorder partial likelihood vector at internal
node 4. Then i=4,j=3,k=5,and q, = P,[q;°(Psp;)]. We
color the branches relevant in this update blue.

For gradient calculations, it becomes useful to rewrite the
likelihood as the inner product at any node of its post- and
preorder partial likelihood vectors. For node k, we have:

3050

PY) =2, PV Y, Yir)
=2y, POY g YO P(Yk, Yii) (8)
= Pids-

In the next section, we derive the derivative of the log-
likelihood w.r.t. any one branch-specific parameter based on
equation (8). In this manner, the new algorithm calculates the
gradient of the log-likelihood w.r.t. all branch-specific param-
eters at once using O(N) operations.

Gradient

To ease presentation, we use only the matrix-vector forms for
derivation in this section. The scalar forms are similar to those
of the previous sections. With the likelihood expanded at
node i as in equation (8), we derive the gradient vector of
the log-likelihood w.r.t. the branch lengths that has the ith
element being the partial derivative of the log-likelihood w.r.t.
b,‘i

B = o lplal/PY)
,0q; ©)
Pl /P (Y)
= quipi/P(Y)v

where the third equality follows the fact that the partial de-
rivative of the preorder partial likelihood vector q; w.r.t. the
branch length b; is:

oq; 0
B =7 PlacEn))
a Q-bi ' o
- <8_l9,e j > [9,°(P;p))] (10)
= (e2Q))'[q,°(P;p;)]
=Qlq;.

Likelihood and Gradient with Substitution Rate
Heterogeneity

Equation (9) assumes homogeneous substitution rate across
sites. A popular approach to model the substitution rate
heterogeneity across sites is by using a hidden Markov model
where one models the substitution rate as the discrete hidden
state with multiple rate categories (Yang 1994). For discrete
rate category | with rate 7y, the transition probability matrix
for branch k of rate category  is Py, = eb_ As in hidden
Markov models, the likelihood becomes the weighted sum of
the conditional likelihood of each rate category that margin-
alizes over all possible hidden states:

PY) =2, P(YIln)PO)
=22, Pipy, Qi P(01),

where p,, and q;, are the corresponding post- and preor-
der partial likelihood vectors at node k for rate category .

(1)
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Their updates are the same as in the rate homogeneous case
by substituting Py,, for Py. Similarly, the numerator and de-
nominator of equation (9) become weighted sums in the rate
heterogeneous case:

0
b, PY) =22, e, g, P () /P(Y). (12)
Equations (10) and (12) show that we only need the post-
and preorder partial likelihood vectors p;, q; and the infini-
tesimal rate matrix Q; at node i for calculating the partial
derivative of branch i. In fact, we can calculate these matrix—
vector multiplications and vector-vector inner products to-
gether with the update of the preorder partial likelihood
vectors in the preorder traversal. This action gives us the
gradient vector of all partial derivatives w.r.t. branch 1, 2,
..+ 2N — 2 in one single preorder traversal.

Diagonal Elements of the Hessian Matrix

We derive the diagonal elements of the Hessian matrix w.r.t.
the log-likelihood to use it later for preconditioning in
Hamiltonian Monte Carlo Sampling section. The second-
order derivative of the preorder partial likelihood vector is
similar to that of its gradient by substituting Q with Q? in
equation (10). Without loss of generality, we illustrate the
derivation with the likelihood function in equation (11) where
rate homogeneity is its special case with one rate category:

5
(13)

Applications

We show that our gradient-based approach significantly
improves computational efficiency when drawing inference
with applications in nonlinear optimization under a
maximum-likelihood framework and through HMC sampling
under a Bayesian framework.

Nonlinear Optimization
Nonlinear optimization is essential to obtain MLEs in statis-
tical phylogenetics. The parameters include, but are not lim-
ited to, branch lengths and substitution rates. GARLI (Zwickl
2006) and RAXML (Stamatakis et al. 2005) employ a number
of optimization algorithms such as the Newton-Raphson
method and Brent's method for various situations. RAXML
can also optionally use the quasi-Newton method of Broyden,
Fletcher, Goldfarb, and Shanno, known as the BFGS algorithm
(see, e.g, Dennis and Schnabel 1996), to optimize substitution
rate parameters. The unconstrained optimization of an
objective function over a set of real parameters is formulated
as: miny f(x), wherex € R" is areal vector with lengthn > 1.
In maximum-likelihood inference, the objective function
f : R" — Ris the negative log-likelihood.

The past few decades have witnessed the development of
a collection of optimization algorithms (see Nocedal and
Wright 2006; Lange 2013 for details). Here, we revisit the

5530 =2, 178} (@0, P PY) - [P

BFGS algorithm and its limited-memory variant (L-BFGS).
We then apply the L-BFGS algorithm for obtaining the
MLE. All positive parameters in the model are log -trans-
formed into unconstrained parameter spaces.

Like other iterative optimization algorithms, the BFGS al-
gorithm starts at an initial position x, in the parameter space
and then iteratively generates a sequence of positions
{Xk}reo- The BFGS algorithm is a line search method that
minimizes the objective function in each iteration along one
specified direction 8: miny,~o f (X + o8 ) and the iteration
continues at X, = Xx + o4& until iterates make no more
fruitful progress, reach a solution point within a certain error
tolerance or max out in number of iterations. Let s, = oy
be the increment vector in the parameter space of iteration k,
g, = Vf(xx) be the gradient vector of iteration k, and y, =
8.1 — & be the difference between the gradient vector of
iteration k + 1 and the gradient vector of the previous itera-
tion k. BFGS determines the line search direction similarly to
that of the Newton method except that one approximates
the inverse of the Hessian matrix (V2f(x;)) ™" by Hy:

0 = —Hig,

Hir = (1= pisyi ) He(1 = puyiesy) + pisisys (14)

where p, = y,:—sk and equation (14) satisfies the secant condi-
tion Hi1y, = sk. BFGS starts with an “initial” approximate
of the inverse Hessian matrix (i.e, Hy = H i) and updates
the H matrix at each iteration. Alternatively, the L-BFGS al-
gorithm “remembers” only the most recent m iterations such
that it initializes Hy 11—, = H inic and applies equation (14)
m times to get Hy, 1 for the next iteration. A typical choice of
the initial matrix H ;i is the product of a scalar constant with
the identity matrix (see Nocedal and Wright 2006; Lange 2013
for choices of the scalar). Therefore, L-BFGS approximates the
Hessian matrix with local curvature information.

Hamiltonian Monte Carlo Sampling
The proposed linear-time gradient algorithm also enables ef-
ficient inference under a Bayesian framework through HMC
sampling. HMC is a state-of-the-art Markov chain Monte
Carlo (MCMC) method that exploits numerical solutions of
Hamiltonian dynamics (Neal 2011). Given a parameter of
interest @ with the posterior density 7(6), HMC introduces
an auxiliary parameter p and samples from the product den-
sity 7 (0, p) = n(0)7(p). The parameter p typically follows a
multivariate normal distribution p ~ N'(0,M) whose co-
variance matrix M is referred to as the “mass matrix.” The
basic version of HMC sets the mass matrix to the identity
matrix, but we discuss a judicious choice in the next section.
Due to the physical laws that motivate HMC, one refers to
0 as the “position” variable and p as the “momentum” var-
iable. One then sets the “potential energy” to the negative log
posterior density U(6) = —log(n(0)) and the “kinetic ener-
gy’ to K(p) = p’M~'p/2. The sum of the potential and
kinetic energy forms the Hamiltonian function H(6,
p) = U(0) + K(p). From the current state (6, p,), HMC
generates a Metropolis proposal (Metropolis et al. 1953) by
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simulating Hamiltonian dynamics in the space (6, p) that
evolves according to the differential equation:

(:I—I: =-VU(0) = Vlogn(0)
40 (15)
P =VK(p) =M"'p.

The popular “leapfrog” method (Neal 2011) numerically
approximates a solution to equation (15). Each leapfrog step
of size ¢ follows the trajectory:

pt+e/2 P+ V Iog n(et)
O = 0, + EM Ptte/2 (16)
€
Pt+e = Ptte/2 +5v log 72(0r).

We need n leapfrog steps, and hence n + 1 gradient eval-
uations, to simulate the dynamics from timet =0to t = ne.
Such an HMC proposal can have small correlation with the
current state, yet be accepted with high probability (Neal
2011). In particular, HMC promises better scalability in the
number of parameters (Beskos et al. 2013) and enjoys wide-
ranging successes as one of the most reliable MCMC
approaches in general settings (Gelman et al. 2013;
Kruschke 2014; Monnahan et al. 2017).

Preconditioning with Adaptive Mass Matrix Informed by the
Diagonal Hessian
Geometric structure of the posterior distribution significantly
affects the computational efficiency of HMC. For example,
when the scales of the posterior distribution vary among
individual parameters, failing to account for such structure
may reduce the efficiency of HMC (Neal 2011; Carpenter et al.
2017). We can adapt HMC for such structure by modifying
the dynamics in equation (15) via an appropriately chosen
mass matrix M. Replacing the standard identity matrix with a
nonidentity one is equivalent to “preconditioning” the pos-
terior distribution via parameter transformation (Neal 2011;
Livingstone and Girolami 2014; Nishimura and Dunson 2016).
Practitioners often choose a mass matrix that approxi-
mates the inverse of the posterior covariance matrix of 0
(Carpenter et al. 2017) or the negative Hessian of the poste-
rior distribution (Girolami and Calderhead 2011). These two
approaches yield similar mass matrices when the posterior
distribution is approximately Gaussian. For more complex
distributions, however, the Hessian better accounts for the
underlying geometry (Girolami and Calderhead 2011) and is
further supported by the linear stability analysis of the leap-
frog integrator (Hairer et al. 2006). Despite its theoretical
advantages, a major practical issue with a Hessian-based ap-
proach is the obligate use of a 0-dependent mass matrix
M = M(0). The corresponding dynamics require computa-
tionally demanding numerical integrators, each step of which
requires several iterations of evaluating and inverting the
mass matrix (Girolami and Calderhead 2011).

3052

To incorporate information from the Hessian without ex-
cessive computational burden, we adaptively tune M to esti-
mate the expected Hessian averaged over the posterior
distribution. We further restrict M to remain diagonal and
hence approximate the diagonals of the expected Hessian
only. This restriction is commonly imposed to regularize
the estimate, and a diagonal matrix alone can greatly enhance
sampling efficiency of HMC in many situations (Salvatier et al.
2016; Carpenter et al. 2017). In addition, we only update the
diagonal mass matrix every k = 10 HMC iterations so that
the cost of computing the expected Hessian diagonals
remains negligible. More precisely, from the first s HMC iter-
ations, we compute:

(s)
SRS TP

log n(0)], = 0©
sis/keZt 820

(17)

0
~Enr(0) [ 70, log n(())}

The (s 4 1)" iteration then updates the mass matrix with
appropriate lower and upper thresholds to make sure that it
remains positive-definite and numerically stable:

Mmin If H,‘,‘ < Mpin
Mi(is+1) = Mmax  If Hii > Mpyax (18)
H  otherwise

for 0 < Mpin < Mpa. The above procedure ensures
“vanishing adaptation” H,-(,-SH) - H,»(,»S> = O(s7") such that
HMC remains ergodic despite the adaptation (Andrieu and
Thoms 2008).

Inferring Evolutionary Rate Variation

Until the development of the first molecular clock model in
the 1960s (Zuckerkandl and Pauling 1962, 1965), our under-
standing of evolutionary time scale derived mostly from fossil
records, because evolutionary rate and time are confounded
when comparing homologous DNA sequences. Molecular
clock models provide means to anchor the evolutionary
time so that chronological events can be estimated.

Molecular Clock Models

In its simplest and earliest form, the molecular clock model
assumes a constant evolutionary rate across the tree
(Zuckerkandl and Pauling 1962). Researchers often refer to
this model as the “strict” clock model. Over the past few
decades, researchers have developed a variety of clock models
to accommodate the inadequacy of ignoring rate variation
among lineages of the strict clock model (see Kumar 2005; Ho
and Duchéne 2014 for extensive reviews). One way to char-
acterize a molecular clock model is by the number of unique
branch-specific evolutionary rates. The strict clock model
assumes rate homogeneity among all branches. Multi-rate
clock models relax the homogeneity assumption by assigning
branches to rate categories. Branches in the same category
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Table 1. Maximum-Likelihood Estimate (MLE) Inference Efficiency Using Two Optimization Methods: Our Proposed Gradient Method (Analytic)

and a Central Finite Difference Numerical Scheme (Numeric).

Analytic Numeric Speedup
Example No. Rates Time(s) Iterations Time(s) Iterations Per Iteration Total
WNV 206 0.3 12 59.3 20 126.2X 210.4X%
LASV 420 1.2 10 369.1 19 168.8X 320.6%
DENV 702 19.1 90 4,827.9 97 234.8X 253.1X

Note.—For each example and method, we report the total time to complete MLE inference, as well as the number of iterations required for optimization on an Intel Core i7-
2600 quad-core processor running at 3.40 GHz. Our proposed method yields a minimum 200-fold increase in performance across the entire inference, which averages out to a

minimum 126-fold performance increase per iteration.

share the same evolutionary rate. The number of categories is
usually >1 but smaller than the total number of branches
(Hasegawa et al. 1989; Huelsenbeck et al. 2000; Yoder and
Yang 2000; Drummond and Suchard 2010). Relaxed molecu-
lar clock models contain the highest possible number of
unique branch-specific rates where each branch evolves at
its own rate. There are two major classes of relaxed molecular
clock models, autocorrelated and uncorrelated clock models.
The major difference between the two classes is their assump-
tion about the causation of the rate variation. Autocorrelated
relaxed clock models assume that evolutionary rate under-
goes a diffusion process from the root node to successive
branches (Thorne et al. 1998; Kishino et al. 2001; Aris-
Brosou and Yang 2002), whereas uncorrelated clock models
make no assumption of rate correlation among branches
(Drummond et al. 2006; Rannala and Yang 2007; Lemey
et al. 2010). A recent addition to the growing list of clock
models consists of a mixed relaxed clock model that com-
bines the merits of autocorrelated and uncorrelated relaxed
clocks (Lartillot et al. 2016).

Application of relaxed clock models inevitably leads to
higher dimensional parameter spaces. However, the com-
putational efficiency of existing methods limits our abil-
ity to draw likelihood-based inference from these high-
dimensional evolutionary models, a problem that is ex-
acerbated in large data sets. We show that our new gra-
dient algorithm ameliorates this difficulty through
applications in gradient-based optimization methods
and HMC sampling. Specifically, we demonstrate marked
improvement on computational efficiency for inferring
the evolutionary rates of three viruses as described in
Materials and Methods under a random-effects relaxed
clock model.

Random-Effects Relaxed Clock Models

The random-effects relaxed clock model combines a strict
clock and an uncorrelated relaxed clock model. We model
the evolutionary rate r; of branch i as the product of a global
tree-wise mean parameter u and a branch-specific random
effect €. We model the random effect €;'s as independent and
identically distributed from a lognormal distribution such
that €; has mean 1and variance 1> under a hierarchical model
where \ is the scale parameter. We note that the popular
uncorrelated relaxed clock model is a special case of this clock
model and will hence also benefit from the improvements in
this manuscript.

Priors

We assign a conditional reference prior to the global tree-wise
mean parameter p (Ferreira and Suchard 2008) and an expo-
nential prior with mean % to the scale parameter . We use
the same substitution models as in each example’s original
study (Pybus et al. 2012; Nunes et al. 2014; Andersen et al.
2015).

Results

We present the computational efficiency improvements con-
ferred by our linear-time gradient algorithm for inferring the
branch-specific evolutionary rates.

Optimization

We obtain MLEs of the branch-specific random effects con-
ditional on all other parameters via the L-BFGS algorithm for
all three viral data sets. In computing these MLEs, we compare
the performance of our analytic gradient method with an
often-used central finite difference scheme. The numerical
scheme calculates the partial derivative of one branch-
specific rate through two likelihood evaluations and has a
complexity of O(N?) for the gradient w.r.t. all rates. On the
other hand, our analytic approach scales O(N) (see New
Approach section ). Table 1 shows a summary of the com-
parison, illustrating the immense performance increase across
the three data sets of our analytic method. Averaged over
each iteration of the MLE estimation process, the analytic
method outperforms the finite difference scheme by a factor
of 126- to 235-fold, leading to a total real-time speedup of
210- to 321-fold.

Posterior Inference
We infer the posterior distribution of all evolutionary rates
using three different MCMC transition kernels in BEAST
(Suchard et al. 2018) using BEAGLE (Ayres et al. 2019). The
first transition kernel is the univariate transition kernel that
Pybus et al. (2012) formerly employed, which we will refer to
as “Univariate.” “Univariate” updates propose new values for
one rate r; at a time whereas the HMC transition kernels
propose new values for all 2N — 2 rates simultaneously. We
consider two mass matrix choices for HMC. “Vanilla” HMC
(VHMC) employs an identity matrix and “preconditioned”
HMC (pHMC) employs an adaptive diagonal matrix informed
by the Hessian.

We compare the efficiency of these three transition kernels
through their effective sample size (ESS) per unit time for
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Fic. 2. Posterior sampling efficiency on all branch-specific evolutionary rate for the WNV, LASV, and DENV examples. We bin parameters by their
ESS/s values. The three transition kernels employed in the MCMC are color-coded: a univariate transition kernel, a “vanilla” HMC transition kernel
with an identity mass matrix, and a “preconditioned” HMC transition kernel with an adaptive mass matrix informed by the diagonal elements of

the Hessian matrix.

estimating all branch-specific evolutionary rates. For each
analysis, we fix the number of MCMC iterations such that
they run for approximately the same time, that is, 100,000
iterations for both HMC kernels compared with 15 million
iterations for the univariate kernel when analyzing the West
Nile virus (WNV) data set, 50,000 iterations for both HMC
kernels compared with 20 million iterations for the univariate
kernel when analyzing the Lassa virus (LASV) data set, and
20,000 iterations for both HMC kernels compared with 7.5
million iterations for the univariate kernel when analyzing the
Dengue virus (DENV) data set.

Figure 2 illustrates the rate estimates binned by their
ESS per second for the three virus data sets, and table 2
reports the relative increase in ESS per second of the two
HMC samplers compared with the univariate kernel over
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all branch-specific evolutionary rates. Compared with the
univariate kernel, the vVHMC sampler achieves a 2.2- to
20.9-fold speedup, whereas the pHMC sampler achieves a
16.4- to 33.9-fold speedup in terms of the minimum ESS
per unit time. The vHMC sampler achieves a 2.5- to 19.8-
fold speedup in terms of the median ESS per unit time,
whereas the pHMC sampler achieves a 7.4- to 23.9-fold
speedup. The unusual spread of the ESS per second dis-
tribution for the vVHMC sampler under the DENV example
is likely attributable to large variation among the scales of
the branch-specific evolutionary rates as discussed in
more detail in Discussion. The more uniform sampling
efficiency of the pHMC sampler arises from the accom-
modation of the variability in scales among the rates in
the mass matrix.
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We use BEAST (Suchard et al. 2018) in combination with
BEAGLE (Ayres et al. 2019) to infer the branch-specific evo-
lutionary rates of the three virus examples described in
Materials and Methods under a random-effects relaxed clock
model. The BEAST analyses comprise 20 million MCMC iter-
ations for the WNV data set, 10 million iterations for the

Table 2. Relative Speedup in Terms of Effective Sample Size Per
Second (ESS/s) of Our “Vanilll” HMC (vHMC) and
“Preconditioned” HMC (pHMC) Transition Kernels Over a
Univariate (univariate) Transition Kernel, for All Three Virus Data
Sets.

ESS/s Speedup

Univariate vHMC pHMC vHMC pHMC

WNV  Minimum 0.215 4.483 7271 209X 339X

Median 0.326 6.446  7.793 19.8X 239X
LASV  Minimum 0.033 0.552 0.656 16.7X 19.8X
Median 0.063 0.797 0.858 12.6X 13.6X
DENV  Minimum 0.011 0.025 0.187 2.2X 16.4X
Median 0.041 0.101 0304 25X 7.4X%X

Note.—We report speedup with respect to the minimum and median ESS/s across
parameters for each example and method.

rate (subst./site/yr)
1.3E-3

3.9E-4

LASV data set, and 60 million iterations for the DENV data
set, to achieve sufficiently high ESS values for all branch-
specific evolutionary rates, as assessed using Tracer
(Rambaut et al. 2018). In accompanying inferred phylogeny
figures, we color the branches according to their inferred
posterior mean branch-specific evolutionary rate. The range
of colors reflects the high variation of rates in all three virus
examples.

West Nile Virus

Our analysis estimates the tree-wise (fixed-effect) mean rate
with posterior mean 5.67 (95% Bayesian credible interval:
5.04,6.30) x 10~ substitutions per site per year and an es-
timated variability characterized by the scale parameter s of
the lognormal distributed branch-specific random effects
with posterior mean 0.33 (0.21,0.46) similar to previous
estimates (Pybus et al. 2012). Figure 3 shows the maximum
clade credible evolutionary tree of the WNV example. Our
analysis discriminates the NY99 lineage as defined in Davis
et al. (2005). The NY99 lineage is basal to all other genomes
congruent with the American epidemic likely to result from
the introduction of a single highly pathogenic lineage.

2005

Fic. 3. Maximum clade credible tree of the WNV example. The data set consists of 104 sequences of the WNV. Branches are color-coded by the
posterior means of the branch-specific evolutionary rates. The concentric circles indicate the time scale with the year numbers. The gray sector in
the outer ring indicates the same 13 samples of the NY99 lineage as identified in the original study.
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rate (subst./site/yr)
1.1E-3

9.1E-4

Sierra Leone
Liberia
Guinea

Ivory Coast
Nigeria

Fic. 4. Maximum clade credible tree of the LASV example. The data set consists of 211 sequences of the S segment of the LASV. Branches are color-
coded by the posterior means of the branch-specific evolutionary rates according to the color bar on the top left. The concentric circles indicate
the time scale with the year numbers. The outer ring indicates the geographic locations of the samples by the color code on the bottom left.

Lassa Virus

Our analysis estimates 1 = 1.00 (0.97,1.10) x 103 substi-
tutions per site per year for the S segment of LASV similar to
previous estimates (Andersen et al. 2015; Kafetzopoulou et al.
2019), with more rate variability (y = 0.088]0.029, 0.142]) as
compared with WNV. Figure 4 shows the maximum clade
credible evolutionary tree of the LASV example. Our result
agrees with LASV being a long-standing human pathogen
that likely originated in modern-day Nigeria more than a
thousand years ago and spread into neighboring West
African countries within the last several hundred years
(Andersen et al. 2015; Kafetzopoulou et al. 2019).

Dengue Virus

Our analysis estimates 1 = 4.75 (4.05,5.33) X104 substi-
tutions per site per year for serotype 3 of DENV similar to
previous estimates (Allicock et al. 2012; Nunes et al. 2014),
with the largest rate variability of all examples analyzed here
(¥ = 1.26[1.06, 1.45]). Figure 5 shows the maximum clade
credible evolutionary tree of the DENV example. We identify
the same two Brazilian lineages as in Nunes et al. (2014), and
both lineages appear to originate from the Caribbean.
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Discussion

We presented a new algorithm for evaluating the gradient of
the phylogenetic model likelihood w.r.t. branch-specific
parameters. Our approach achieves linear complexity in the
number of sequences by complementing the postorder tra-
versal in Felsenstein’s pruning algorithm (Felsenstein 1973,
1981) with its reverse preorder traversal. The two traversals
together complete Baum’s forward-backward algorithm
(Baum 1972). Schadt et al. (1998) previously employed the
forward—backward algorithm to calculate the likelihood and
its gradient w.r.t. the relatively small number of parameters
that characterize a generalized Kimura (1980) CTMC. On the
other hand, pruning-only-based gradient algorithms have
made improvements over the past few years that scale O(N
h) instead of O(N?) where h is the total level of the tree
(Kenney and Gu 2012). However, in many phylogenetic prob-
lems with nonneutral evolutionary processes, h is often much
closer to N than log N. Careful reuse of some computations
when properly rerooting the tree can further accelerate the
pruning-based gradient method. Unfortunately, rerooting the
tree requires the CTMC to be time-reversible and at statio-
narity. The assumptions of reversibility and stationarity can be
biologically unreasonable but are often kept for simplicity and
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rate (subst./site/yr)
1.3E-2

4.1E-5

Brazil
Caribbean
Central America
North America
South Asia
Southeast Asia
Venezuela

Fic. 5. Maximum clade credible tree of the DENV example. The data set consists of 352 sequences of the serotype 3 of the DENV. Branches are
color-coded by the posterior means of the branch-specific evolutionary rates according to the color bar on the top left. The concentric circles
indicate the time scale with the year numbers. The outer ring indicates the geographic locations of the samples by the color code on the bottom

left. “I” and “II” indicate the two Brazilian lineages as in the original study.

computational tractability. Our linear-time gradient algo-
rithm extends the approach in Schadt et al. (1998) to general
CTMGs. Our algorithm does not require any model assump-
tions on stationarity or reversibility and can be applied to
both homogeneous and nonhomogeneous Markov
processes.

Our algorithm calculates the likelihood and its gradient
w.rt. all branch-specific parameters through the postorder
and the complementary preorder traversal. One essential
benefit of the proposed algorithm is that it calculates the
gradient w.rt. a collection of branch-specific parameters
(e.g, evolutionary rate and time parameters) at the same
time with no additional cost for caching. However, the com-
putational load is not identical for the two traversals. For
example, the postorder traversal calculates the transition
probabilities at all branches that can be reused in the preorder
traversal (see egs. 9 and 10). Moreover, the preorder traversal
updates approximately twice as many partial likelihood vec-
tors as the postorder traversal. This difference is due to the
additional preorder partial likelihood vectors at the tip nodes
together with the post- and preorder partial likelihood vec-
tors at the internal nodes.

Interestingly, one can also use the post- and preorder par-
tial likelihood vectors to obtain the gradient w.r.t. any (pos-
sibly tree-wise) parameter 0 that characterizes Q. To
accomplish this task, we first substitute Q; — Pf1a—'z; in
equations (9) and (12) (see, e.g, Kalbfleisch and Lawless
1985 for obtaining the partial differential matrices). We
then sum these contributions up over all branches. For
0 = =, the stationary distribution, an additional gradient con-
tribution may arise at the root node. Depending on the di-
mensionality of 0, however, computing numerical gradient
approximations through multiple likelihood evaluations may
be faster.

Through our three example data sets, we illustrate the use
of our gradient algorithm in both maximum-likelihood and
Bayesian analyses. We show that our new algorithm can con-
siderably accelerate inference in both frameworks. In the
maximum-likelihood analyses, we compare the performance
of the L-BFGS optimization method using our gradient algo-
rithm with the same optimizer but using a central finite dif-
ference numerical gradient algorithm. We choose this
numerical scheme for two reasons. One is that the central
scheme has only roughly twice the computational cost as
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pruning-based analytical gradient methods. The other reason
is to investigate the influence of numerical error in optimiza-
tion. The observed per-iteration speedup with our gradient
algorithm increases with increasing number of sequences in
the data set. This finding is consistent with our gradient al-
gorithm being a linear-time algorithm in the number of
sequences as opposed to quadratic pruning-based algorithms.
We also observe slightly more iterations in the optimization
with the numeric gradient than with the proposed analytic
gradient method. Moreover, for all three data sets, the opti-
mization with our analytic gradient method ends with slightly
higher log-likelihood values at the fifth digit after the decimal
point with the same stopping criteria. The /2-norm of the
gradient when the optimization stops is higher with the nu-
merical method suggesting early termination due to numer-
ical trouble. Numerical error builds up from the matrix
exponential calculations and propagates along the tree.

A caveat of our optimization comparison is that we do not
compare with other widely used optimization criteria. For
example, GARLI (Zwickl 2006) and RAXxML (Stamatakis
et al. 2005) incorporate local optimization routines in addi-
tion to global optimization. The purpose of local optimization
is partly to avoid the computational burden of optimizing all
branches simultaneously, especially after a topological rear-
rangement. For time-reversible models at stationarity, with
properly rerooting the tree, the branch lengths in the vicinity
of a topological rearrangement can be efficiently optimized
via the Newton-Raphson method incorporating both the
gradient and the Hessian information for one branch at a
time. However, such optimization strategy is only efficient
for optimization over a limited number of parameters, be-
cause the computational complexity for evaluating the
Hessian matrix increases quadratically with the number of
parameters.

In the Bayesian analyses, our linear-time gradient algorithm
allows efficient sampling of all branch-specific evolutionary
rates from their posterior density using HMC. The vanilla
HMC sampler gains a 2.2- to 20.9-fold increase in learning
the branch-specific rates with the minimum ESS per unit time
criterion. The preconditioning improves the efficiency of
HMC with a 16.4- to 33.9-fold increase. The computational
cost for evaluating the diagonal entries of the Hessian matrix
is almost the same as the gradient (see eq. 13). In fact, the first
term is nearly identical to the gradient in equation (12) except
for replacing the infinitesimal matrix Q; and the discrete rate
7, by their quadratic forms. The second term in equation (13)
reuses the gradient evaluated at the current position from the
cached values for updating the momentum (see eq. 16).
Moreover, we update the adaptive preconditioning mass ma-
trix every ten iterations of the HMC sampler. This adaptation
limits the additional computational cost in evaluating the
diagonal of the Hessian matrix.

We observe an inverse correlation between the variability
of the scales among the branch-specific evolutionary rates
and the spread of ESS per second for the “vanilla” HMC
sampler as shown in figure 2. Specifically, using the standard
deviation (SD) of the marginal posterior distribution as a
qualitative measure for the scale, the WNV, LASV, and
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DENV examples return a variance across the SDs of all
branch-specific evolutionary rates as 0.014, 0.006, and 0.036
and the ratio between the maximum and the minimum of
the SDs being 2.2, 1.7, and 17.8, respectively. The branch-
specific evolutionary rates of the DENV example exhibit the
highest variability among the three data sets and the “vanilla”
HMC sampler performs the worst for this data set. As dis-
cussed in Hamiltonian Monte Carlo Sampling section, not
accounting for high variability among the scales of the param-
eters reduces the efficiency of the “vanilla” HMC sampler.
Preconditioning improves the inadequate performance of
the “vanilla” HMC sampler via the adaptive mass matrix in-
formed by the diagonal elements of the Hessian. The mass
matrix incorporates the variation in scales among the branch-
specific evolutionary rates with a negligible cost of additional
computation.

Finally, although our examples jointly infer topology,
branch-specific rates and other model parameters, we report
efficiency gains while conditioning on a single topology to
avoid identifiability issues that arise across the rates when
the topology changes. Common across Bayesian phyloge-
netics, our Metropolis-with-Gibbs (Tierney 1994; Andrieu
et al. 2003) inference strategy cycles between sampling the
topology, the rates and then the other models, each from
their respective full conditional distributions. As expected,
sampling the high-dimensional rates remains rate-limiting,
so their efficiency gain is the most germaine. We expect,
however, that increased sampling efficiency conditional on
one topology also helps us explore topology space by decreas-
ing autocorrelation along the Metropolis-with-Gibbs cycle,
but this requires future work to justify more fully.

Materials and Methods

Implementation

We have implemented a central processing unit (CPU) version
of the algorithm in this manuscript within the development
branch of the software package BEAGLE (Ayres et al.2019). We
employ these extensions within the development branch of
BEAST (Suchard et al. 2018) for the demonstrations in this
manuscript. We provide instructions and the BEAST XML files
for reproducing these analyses on Github at https://github.
com/suchard-group/hmc_clock_manuscript_supplement.

Emerging Viral Sequences

We examine the molecular evolution of WNV in North
America (1999-2007), the S segment of LASV in West
Africa (2008-2013) and serotype 3 of DENV in Brazil
(1964-2010) (Pybus et al. 2012; Nunes et al. 2014; Andersen
et al. 2015). In all three virus data sets, phylogenetic analyses
have revealed a high variation of the evolutionary rates across
branches in the underlying phylogeny.

West Nile Virus

WNV is a mosquito-borne RNA virus with birds as the pri-
mary host. The first detected case in United States was in New
York City in August 1999, and the virus reached the American
west coast by 2004. In total, human infections resulted in over
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1,200 deaths. The data consist of 104 full genomes, with a
total alignment length of 11,029 nucleotides, and were col-
lected from infected human plasma samples from 2003 to
2007 as well as near-complete genomes obtained from
GenBank (Pybus et al. 2012).

Lassa Virus

Every year, LASV is responsible for thousands of deaths and
tens-of-thousands of hospitalizations (Andersen et al. 2015).
Although many LASV infections are subclinical, they can also
lead to Lassa fever, a hemorrhagic fever similar to that caused
by Ebola virus. Perhaps less well-known than Ebola viral dis-
ease, Lassa fever can nonetheless lead to over 50% fatality
rates among hospitalized patients. Unlike Ebola virus, which
passes directly between humans, LASV circulates in a rodent
(Mastomys natalensis) reservoir and mainly infects humans
through contact with rodent excreta. LASV is a single-
stranded RNA virus with a genome consisting of two seg-
ments: the L segment is 7.3 kilobase pairs (kb) long the S
segment is 3.4 kb long. In this manuscript, we use the S seg-
ment of the LASV sequence data set of Andersen et al. (2015)
that consists of 211 samples obtained at clinics in both Sierra
Leone and Nigeria, rodents in the field, laboratory isolates, and
previously sequenced genomes.

Dengue Virus

Worldwide, DENV infects close to 400 million people and
causes >25,000 deaths annually. Much like the LASV,
DENYV can also lead to hemorrhagic fever that is often referred
to as “breakbone fever” on account of the severe joint and
muscle pain it causes. DENV is endemic to the tropics and
subtropics, with mosquitoes transmitting the virus between
humans. Nunes et al. (2014) selected 352 serotype 3 DENV
(DENV-3) sequences from a total of 639 complete DENV
genomes based on genetic diversity and maximization of
the sampling interval. The sample collection ranged from
1964 to 2010 within a total of 31 distinct countries in
Southeast Asia, North America, Central America, the
Caribbean, and South American countries.
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