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Parallel Markov Chain Monte Carlo (pMCMC) algorithms generate clouds of proposals at each step to
efficiently resolve a target probability distribution μ. We build a rigorous foundational framework for
pMCMC algorithms that situates these methods within a unified ‘extended phase space’ measure-theoretic
formalism. Drawing on our recent work that provides a comprehensive theory for reversible single-
proposal methods, we herein derive general criteria for multiproposal acceptance mechanisms that yield
ergodic chains on general state spaces. Our formulation encompasses a variety of methodologies, including
proposal cloud resampling and Hamiltonian methods, while providing a basis for the derivation of novel
algorithms. In particular, we obtain a top-down picture for a class of methods arising from ‘conditionally
independent’ proposal structures. As an immediate application of this formalism, we identify several
new algorithms including a multiproposal version of the popular preconditioned Crank–Nicolson (pCN)
sampler suitable for high- and infinite-dimensional target measures that are absolutely continuous with
respect to a Gaussian base measure. To supplement the aforementioned theoretical results, we carry out a
selection of numerical case studies that evaluate the efficacy of these novel algorithms. First, noting that
the true potential of pMCMC algorithms arises from their natural parallelizability and the ease with which
they map to modern high-performance computing architectures, we provide a limited parallelization study
using TensorFlow and a graphics processing unit to scale pMCMC algorithms that leverage as many
as 100k proposals at each step. Second, we use our multiproposal pCN algorithm (mpCN) to resolve
a selection of problems in Bayesian statistical inversion for partial differential equations motivated by
fluid measurement. These examples provide preliminary evidence of the efficacy of mpCN for high-
dimensional target distributions featuring complex geometries and multimodal structures.

Keywords: Parallel (Multiproposal), Markov Chain Monte Carlo (pMCMC), preconditioned Crank–
Nicolson (pCN), Hamiltonian Monte Carlo (HMC), simplicial sampler, Bayesian statistical inversion,
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2 Glatt-Holtz et al.

1. Introduction

The efficient generation of random samples is a central task within many of the quantitative sciences. The
workhorse of Bayesian statistics and statistical physics, Markov chain Monte Carlo (MCMC) comprises
a large class of algorithms for sampling from arbitrarily complex or high-dimensional probability
distributions. The Metropolis–Hastings method (MH) (Hastings, 1970; Metropolis et al., 1953) stands
as the seminal MCMC algorithm, and its basic operation underlies most of the MCMC techniques
developed to this day. At each iteration, these algorithms choose the next Markov chain state by (1)
randomly generating a proposal state according to an auxiliary proposal distribution and (2) accepting
or rejecting the proposed state according to a carefully derived threshold. Powerful, modern algorithms
such as Hamiltonian (hybrid) Monte Carlo (HMC) (Duane et al., 1987; Neal, 2011) share the same two-
step approach but use additional deterministic machinery to guide the random proposal and obtain, e.g.,
lower autocorrelation between samples. Recent independent works (Andrieu et al., 2020; Glatt–Holtz
et al., 2023; Neklyudov et al., 2020) develop an all-encompassing mathematical framework that describes
essentially any (reversible) single proposal MH algorithm using three ingredients: a random proposal,
an involution on an extended phase space and an accept–reject step. This unified framework illuminates
under-appreciated relationships between a variety of known algorithms while providing a means for
deriving new methods.

Unfortunately, the overall structure of these MH extensions may fail to fully exploit contemporary
parallel computing resources such as multi-core central processing units (CPUs) and many-core graphics
processing units (GPUs). While model-specific algorithmic subroutines such as log-likelihood and log-
likelihood gradient evaluations sometimes admit parallelization (Holbrook et al., 2022a,b, 2021a,b),
the algorithms’ generally sequential nature can lead to under-utilization of increasingly widespread
hardware (Brockwell, 2006). Parallel MCMC algorithms (pMCMC) offer a top-down approach to
exploiting such infrastructures through their use of multiple proposals at each step. The multiproposal
structure makes pMCMC algorithms amenable to conventional parallelization resources such as GPUs
(see Section 5.1), and Holbrook (2023b) even demonstrates advantages for implementations that leverage
quantum computing. While general, efficient and user-friendly parallel implementations of pMCMC
algorithms remain an engineering challenge, there is reason to believe that the pMCMC paradigm may
prove useful when other, more prevalent MCMC paradigms—such as, e.g., gradient-based sampling or
parallelization using multiple chains (Gelman & Rubin, 1992)—encounter their own challenges.

Whereas gradient-based MCMC methods such as HMC or Metropolis-Adjusted Langevin Algorithm
(MALA) can scale inference to extremely high-dimensional settings, they are not always appropriate.
Sometimes the gradient is either not available, is computationally prohibitive or involves difficult
derivations (see Section 5.2.3). More generally, these algorithms struggle to tackle distributions with
challenging geometries, even though there are sometimes solutions. On the one hand, if a target is roughly
Gaussian—albeit with an ill-conditioned covariance matrix—then one may effectively implement HMC
using an adaptive mass matrix (Holbrook et al., 2022b). On the other hand, if a target is both ill-
conditioned and strongly non-Gaussian, then there are few gradient-based options beside Riemannian
HMC (Girolami & Calderhead, 2011), a user-intensive method that scales poorly to high dimensions,.
Finally, even HMC can lose its competitive advantage over vanilla MH in multimodal settings (Mangoubi
et al., 2018).

Parallel implementation of multiple MCMC chains is often a beneficial strategy that adequately
leverages hardware resources such as multiple cluster nodes or CPU cores, but the paradigm is not
without its own difficulties. First, a lack of communication between chains means that one chain’s
progress cannot aid that of another. This is a problem because there is usually little benefit to combining
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Parallel MCMC Algorithms 3

multiple poorly-mixing chains, where one may measure the quality of the combined Monte Carlo
estimator using, say, the potential scale reduction factor (R-hat) of Gelman & Rubin (1992). Thus,
the parallel chain strategy may fail when a target displays difficult geometry that confounds individual
chains. When such targets are also high-dimensional, memory limitations may inhibit inference: C chains
of length S defined on a D-dimensional state space require O(SDC) storage. Finally, the multi-chain
strategy may also fail when the target distribution is multimodal, as Neal (1996) notes:

Unfortunately, multiple independent runs will not, in general, produce a sample in which each mode is
fairly represented, because the probability of a run reaching a mode will depend more on the mode’s ‘basin
of attraction’ than on the total probability in the vicinity of the mode.

Accordingly, we cast pMCMC as a paradigm that both complements other MCMC paradigms
and provides further opportunities for the use of high-performance computing resources in MCMC.
Notwithstanding a significant and growing recent literatureon pMCMC and related methods, cf.
(Calderhead, 2014; Delmas & Jourdain, 2009; Frenkel, 2004; Holbrook, 2023a; Liu et al., 2000; Luo &
Tjelmeland, 2019; Neal, 2003; Schwedes & Calderhead, 2021; Tjelmeland, 2004), the subject remains
underdeveloped leaving a broad scope for the development and analysis of novel pMCMC methods.

This work provides a unified theoretical foundation for algorithm design in this important direction
in the sampling literature, encompassing algorithms that use single (Section 2) or multiple (Section 3)
jumps within each proposal set. Our approach then allows us to identify new algorithms while placing
existing methods in a broader context and rigorously justifying their reversibility (Section 4). Finally, we
provide a series of numerical case studies (Section 5) that demonstrate the efficacy of our new methods
and explore the tuning of algorithmic parameters. We continue this introduction with a comprehensive
summary of our contributions (Section 1.1) before concluding with an overview of the existing pMCMC
literature (Section 1.2).

1.1 Contribution overview

Our first contribution is to show that the unified framework developed recently in Glatt–Holtz et al.
(2023) can be fruitfully and nontrivially extended to encompass a broad class of pMCMC methods. We
develop an involutive theory of pMCMC that (1) firmly places these multiproposal algorithms in a broad
measure-theoretic context and (2) makes clear when a pMCMC algorithm is unbiased or reversible
with respect to a given target distribution μ. Note that our formalism includes extensions that allow for
proposal cloud resampling.

In Section 2, we begin by introducing a broad class of Markovian kernels of the form

Pα,S,V (q, dq̃) =
p∑

j=0

ˆ
Y

αj(q, v)δΠ1◦Sj(q,v)(dq̃)V(q, dv), (1.1)

where q is the current state, the αjs determine the acceptance probabilities, the Sjs are involutive operators
acting on an extended abstract phase space X × Y , Π1 is the projection onto the first component, namely
Π1(q, v) = q, and V is the multiproposal mechanism. Algorithmically, the kernel Pα,S,V first draws a
sample v from V(q, dv), then produces a cloud of proposals

(Π1 ◦ S0(q, v), . . . , Π1 ◦ Sp(q, v)),

and finally draws the next state from this cloud with probabilities

(α0(q, v), . . . , αp(q, v)).
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4 Glatt-Holtz et al.

As we illustrate below, (1.1) encompasses a very broad class of pMCMC samplers inclusive of both
random walk and Hamiltonian-type methods.

In a series of results (Theorem 2.2, Corollary 2.4, Corollary 2.6, Theorem 2.10 and Theorem 2.11),
we identify various conditions on αj, Sj and V such that, for a given target measure μ, we have

Pα,S,V (q, dq̃)μ(dq) = Pα,S,V (q̃, dq)μ(dq̃), (1.2)

i.e., Pα,S,V is reversible and hence invariant with respect to a given target μ. Notably, Corollary 2.6
includes as a special case any single proposal MH-type algorithm that is reversible with respect to a
given target. As such, the theory we develop here may be seen as a strict generalization of Glatt–Holtz
et al. (2023).

On the other hand, it is worth highlighting some novel insights and challenges to developing the
multiproposal theory in contrast to (Andrieu et al., 2020; Glatt–Holtz et al., 2023; Neklyudov et al.,
2020). The single proposal setting rightly emphasizes the traditional MH acceptance mechanism, a
choice that has shown to be optimal (Tierney, 1998, Section 3). This mechanism frames Corollary 2.6
herein. By contrast, a Barker-type acceptance mechanism (Barker, 1965) reveals its salience in the
pMCMC setting, and our results Corollary 2.4, Theorem 2.10 and Theorem 2.11 lead to Algorithms
4 and 5 later in Section 4.

To make this more explicit, we consider pMCMC algorithms that involve acceptance probabilities
for the jth proposed state taking the form

αj(q0, q1, . . . , qp) = π(qj)∑p
k=0 π(qk)

, (1.3)

where q0 is the current state of the chain, (q1, . . . , qp) is the cloud of proposed states made according to
some kernel V(q0, dq1, . . . , dqp), and the involutions Sj are the ‘flip’ operators exchanging the jth and
zeroth elements (see (2.13) below). Here the function π may be the density of the target measure μ or
taken to be proportional to the likelihood in Bayesian settings. The salience of (1.3) is immediately
intuitive—it yields high acceptance probabilities for points in the proposal cloud that inhabit high
probability regions of the target distribution.

Of course, we do not expect V in conjunction with (α0, . . . , αp) defined according to (1.3) to yield an
unbiased algorithm for a given target μ in general. But, in Section 2.3, we are able to draw the following
wide ranging conclusions by restricting attention to a certain class of ‘conditionally independent’
proposal kernels of the form

V(q0, dq1, . . . , dqp) =
ˆ p∏

j=1

Q(q̃0, dqj)Q(q0, dq̃0), (1.4)

where Q, Q are single element Markov kernels on the parameter space on which μ sits. Note that, for
such kernels V , one obtains samples from the current state q0 by first producing q̃0 from Q(q0, ·) and
then drawing (q1, . . . , qp) independently from Q(q̃0, ·). For such proposal structures V , we are able to
write down a Barker-like acceptance probability such that the resulting Metropolized system is unbiased
with respect to essentially any target measure μ. See Theorem 2.10, for our precise formulation.

Interestingly, the naive choice Q(q0, dq̃0) = δq0
(dq̃0) that reduces V to

∏p
j=1 Q(q0, dqj), i.e., p

independent proposals around the current state q0, leads to a complicated and potentially computationally
onerous acceptance probability αj. See, for example, (4.8) in Section 4. On the other hand, inspired by
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Parallel MCMC Algorithms 5

Tjelmeland (2004), if one carefully chooses Q in relation to Q we show that one obtains an acceptance
probability of the form (1.3). See Theorem 2.11 for precise formulations. Note that in many cases Q is
readily identifiable from Q. Indeed, as observed previously in Tjelmeland (2004) in the specific case of
Gaussian proposals, we may take Q = Q under a minimal symmetry condition on Q. Taken further this
case leads us to novel ‘infinite dimensional’ algorithms as we describe presently (see Algorithm 5).
Furthermore, in the finite dimensional setting we show that by considering any probability density
r : RN → R

+ we obtain suitable Q, Q by taking

Q(q, dq̃) = r(q − q̃)dq̃, Q(q, dq̃) = r(q̃ − q)dq̃, (1.5)

thus accommodating non-symmetric proposal structures (see Algorithm 4).
Another natural consideration in developing pMCMC methods is to consider the possibility of

performing multiple finite state space jumps between the elements of a proposal cloud. After all, when
target evaluations at proposal points represents the main computational burden, there may be relatively
little computational overhead associated with additional inter-proposal jumps. In Section 3, we extend the
formalism of Section 2 to support multiple jumps within the proposal set. Here our framework provide
a rigorous justification for methods advanced in Calderhead (2014).

In summary, the formalisms we develop in Section 2, Section 3 provide a unified basis for concrete
algorithm design. In Section 4, we begin to explore this large space of possible methods and to develop
a selection of applications within our paradigm. Our most general results Theorem 2.2, Theorem 3.3
and our observations around kernels of the form (1.4), Theorem 2.10, Theorem 2.11, Corollary 2.12,
yield the novel and immediately applicable algorithms in Algorithm 4 and in Algorithm 5, Algorithm 6.
Meanwhile in Section 4.3, we consider HMC variants that use multiple integration times. This study
includes a rigorous and more systematic framing of a method suggested previously in Calderhead (2014).
Section 4.4 revisits the simplicial sampler recently introduced in Holbrook (2023a).

Algorithms 5 and 6 provide multiproposal generalizations of the so called preconditioned Crank–
Nicolson (pCN) algorithm (Beskos et al., 2008; Cotter et al., 2013). These methods address a class of
target measures of the form

μ(dq) = Z−1 exp(−φ(q))μ0(dq), (1.6)

where μ0 is a centered Gaussian base measure. Such measures μ appear naturally in a variety of
high- and infinite-dimensional settings (Dashti & Stuart, 2017; Stuart, 2010). Note that while practical
implementation of such schemes requires truncation to finite dimensions, deriving algorithms tailored
to infinite-dimensional target measures can partially beat the curse of dimensionality in the sense that
mixing rates for truncations of the full problem do not depend on the order of the truncation; see Hairer
et al. (2014), Glatt-Holtz & Mondaini (2021) for some rigorous results in this direction.

The pCN algorithm—so named because it arises from a Crank-Nicolson temporal discretization of
an Ornstein–Uhlenbeck process preconditioned by the covariance C of μ0—exploits a proposal kernel
of the form

QpCN(q, dq̃) = P(ρq +
√

1 − ρ2v ∈ dq̃), where v ∼ μ0. (1.7)

Here, ρ ∈ [0, 1] is an algorithmic parameter dictating the degree of aggressiveness of the proposal. In
the context of (1.4), we show that combining Q = Q := QpCN and an acceptance probability of the form
(1.3) with π(q) = exp(−φ(q)) yields a pMCMC algorithm that is reversible (and hence invariant) with
respect to measures of the form (1.6). We dub this method the multiproprosal-pCN (mpCN) algorithm.
Notably, mpCN stands as a gradient-free methodology that is easy to implement in comparison to other
‘Hilbert space’ methods used for certain parameter estimation problems for partial differential equations
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6 Glatt-Holtz et al.

(PDEs) considered in statistical inversion. Here, the existing alternatives to vanilla pCN algorithm, ∞
MALA and ∞ HMC (Beskos et al., 2011; Cotter et al., 2013), typically require adjoint methods and
may be complicated or practically impossible to implement. Following the discussion at the beginning
of this introduction, even properly implemented versions of these algorithms can suffer under difficult
target geometries.

Armed with Algorithms 4 and 5, we conclude this contribution by providing a series of numerical
case studies in Section 5. These studies comprise preliminary investigations into the efficacy and the
tuning of algorithmic parameters for these pMCMC algorithms. We select these studies with an eye
towards effectively leveraging modern computer architectures while identifying significant domains
of immediate applicability. In Section 5.1, we demonstrate the natural parallelizability of pMCMC
with a limited high-performance computing study. Here, we use a GPU to power Algorithm 4 with
up to 100,000 proposals at each iteration. With a simple TensorFlow implementation, wall times per
iteration for a GPU are shown to be orders of magnitude smaller than those for a comparable sequential
implementation. Furthermore, we show that these speedups increase with target dimensionality. Under
a fixed computational budget, GPU based parallelization also confers greater sampling efficiency for
massively multimodal target distributions, with speedups again increasing with mixture component
counts. But the naturally parallel structure of pMCMC makes it amenable to other parallel computing
techniques as well. In a companion paper (Holbrook, 2023b), we combine quantum optimization with
the Gumbel-max trick and show that quantum algorithms deliver significant theoretical speedups for
pMCMC algorithms similar to Algorithm 4.

To test efficacy of mpCN, namely Algorithm 5, in Section 5.2 we consider three stylized nonlinear
statistical inverse problems (Dashti & Stuart, 2017; Kaipio & Somersalo, 2006; Stuart, 2010) motivated
by fluid measurement, drawing on our concurrent and recent work (Borggaard et al., 2020, 2023). For
all of these problems our aim is to provide a principled estimate for an unknown parameter q sitting
in a Hilbert space X from the observation of data Y described by Y = G(q) + η. Here G is a forward
map determined from a physical model defined up to the unknown parameter q. The additive η is a
probabilistic quantity representing measurement error. We in effect invert G by placing a (Gaussian)
prior μ0 on q and then invoking Bayes theorem to obtain a posterior of the form (1.6) defined in terms
of G and the distribution of η. Note that, in each of the problems we present, G is a nonlinear map
from higher dimensional unknown parameter space to lower dimensional collections of observations so
that we are addressing a severely ill-posed inverse problem resulting in a non-Gaussian posterior target
measure μ; see Figures 4 and C18 below. Furthermore, the latter two problems presented in Section 5.2.2
and Section 5.2.3 involve a naturally infinite-dimensional parameter space and feature forward maps
involving the numerically expensive resolution of a partial differential equation.

As our first example we consider a problem that mimics the mathematical form of PDE inverse
problems of interest at a smaller scale. Our aim here is to provide ‘table-top lab’ amenable to
computations that can be easily carried out on a personal computer in a matter of minutes or hours
for moderate dimensional problems and thus allowing for more comprehensive parameter studies. This
problem estimates the coefficients of a d ×d antisymmetric matrix Aq—parameterized by its d(d −1)/2

independent components q—from the partial, noisy observations of solutions Ŝ(q) = x(Aq) of the

corresponding problem (Aq + κI)x = g, where here κ > 0 and g ∈ R
d are additional parameters

assumed to be known a priori. We find that this class of inverse problems exhibits intricate statistical
structures reminiscent of far more complex PDE constrained settings they mimic. See Figure 4 below
and compare with, e.g., Figure C18. We therefore think this simple toy model holds independent interest
outside of our immediate considerations here.
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Parallel MCMC Algorithms 7

Our other two inverse problems involve infinite-dimensional unknown parameter spaces and a
forward map G that involves resolution of a partial differential equation or system of partial differential
equations. One infinite-dimensional problem, considered previously in Borggaard et al. (2020), involves
the estimation of a divergence free fluid flow field v through the sparse, noisy observation of a solute
that is passively advected and diffuses in the fluid medium. Physically, we can think of estimating
the motion of water filling a glass by observing the concentration of a dye that has been introduced.
Mathematically, this may be described as observing the solution θ = θ(q) of an advection diffusion
equation ∂tθ + q · ∇θ = κΔθ , which we consider here on a periodic two-dimensional domain starting
from a given (known) initial condition θ0. Here, as a second infinite-dimensional benchmark for mpCN,
we revisit a particular stylized example identified in Borggaard et al. (2020), which exploits natural
symmetries in this model to produce complex high-dimensional statistical correlation structures that are
challenging to sample from in an efficient manner.

Our final statistical inversion problem is a fluid domain shape estimation problem that we develop in
concurrent work (Borggaard et al., 2023). For this problem the unknown parameter q specifies the shape
of a domain upon which a system of PDEs governing a time stationary Stokes flow u and an associated
solute concentration θ are defined. Our aim is therefore to estimate the boundary shape from sparse or
volumetrically averaged observations of u and θ . The forward map G therefore requires solving a system
of PDEs on an irregular domain, making the derivation and implementation of an appropriate adjoint
method a difficult task. Moreover, the typical implementation will involve a (typically third-party, black
box) meshing algorithm to re-mesh the domain at each iteration, ruling out use of automatic differenti-
ation algorithms. This problem is therefore a natural fit for exploration of gradient-free algorithms.

1.2 Literature review

The pMCMC literature presents a patchwork of independent and sometimes overlapping frameworks for
using multiple proposals within a generalized MH algorithm. Although these works come from different
disciplines (e.g., statistics (Neal, 2003), physics (Frenkel, 2004), probability (Delmas & Jourdain, 2009),
and machine learning (Schwedes & Calderhead, 2021)), they all seek to answer a natural question: “Why
not use more than one proposal within Metropolis-Hastings?” Perhaps due to the multi-disciplinary
context, the different answers to this question have often come with their own terminology: waste-
recycling (Frenkel 2004), parallel MCMC (Schwedes & Calderhead, 2021), multiproposal methods
(Holbrook, 2023a), and generalized (Calderhead, 2014) or multiple-try (Luo & Tjelmeland, 2019)
Metropolis-Hastings (MH) are a few. In this paper, we explicitly do not consider the well-known
multiple-try MH algorithm of Liu et al. (2000), which randomly selects from a cloud of proposals before
an additional MH step. Here, we are interested in methods that subsume proposal selection into a single
step. Those who are interested in a thorough involutive treatment of multiple-try MH should consult
(Andrieu et al., 2020), who successfully fit that particular algorithm into a single-proposal framework.
Whereas the general multiple-proposal framework we construct in Section 2 admits the single-proposal
framework of Glatt–Holtz et al. (2023) as a special case, it is difficult to say definitively that there is no
theoretical mechanism by which our multiple-proposal extension may be viewed as a special case of the
single-proposal theory. We reserve this question for future work.

Neal (2003), Tjelmeland (2004) and Frenkel (2004) provide early contributions to the pMCMC
literature by investigating MCMC algorithms that generate multiple proposals at each iteration. Neal
(2003) considers the special setting of non-linear state space models and develops an algorithm for
sampling from the distribution over hidden states conditioned on an observed sequence. At each iteration,
the method generates a ‘pool’ of candidate sequences, an element of which is the current state, in an
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8 Glatt-Holtz et al.

iterative manner and selects from among these sequences with probability proportional to the target
distribution divided by a ‘pool’ distribution that characterizes the probability of obtaining the individual
proposal conditioned on the other proposals. Neal (2003) shows that this strategy with P = 10 proposals
greatly outperforms simple Metropolis steps on an iteration by iteration basis and that computing the
target probabilities with the help of the linear-time forward-backward algorithm (Scott, 2002) boosts
implementation speeds. Tjelmeland (2004) works in a more general setting and develops multiple
proposal generation and multiple transition strategies. Of the latter, the paper’s ‘Transition alternative 1’
relates closely to that of Neal (2003), randomly accepting a proposed state with probability proportional
to the target density times the probability of generating the proposal conditioned on the other proposed
states. In addition to simply randomly accepting one of the many proposals at each step, Tjelmeland
(2004) shows that a carefully weighted average of all proposals provides an unbiased estimator for an
arbitrary estimand, assuming that the Markov chain has converged to the target distribution. Among
other results, Tjelmeland (2004) shows that empirically optimal proposal scalings grow, and empirical
variances of the weighted estimator decrease, with the number of proposals. Section 2, Section 3
establishes a measure-theoretic framework that reduces to the methods of Tjelmeland (2004) as a
special case.

Working in the setting of statistical physics, Frenkel (2004) proposes a method called ‘waste-
recycling’ that generates multiple proposals at each iteration and constructs a running, weighted estimator
that is a special case of that of Tjelmeland (2004), with weights that are products of target probabilities
and the probabilities of transitioning from all other proposed states. Frenkel (2004) argues for the
correctness of this approach by viewing each iteration’s contribution to the running estimator as a
‘coarsening’ of P + 1 states that satisfies ‘superdetailed balance’ despite not satisfying detailed balance.
Finally, Frenkel (2004) applies waste-recycling to estimating the probability distribution over total spin
for a 2D, discrete spin Ising model on a 322 spin lattice and demonstrates an over 1010-fold reduction
in statistical error compared to Swendsen-Wang. Delmas & Jourdain (2009) prove consistency and
asymptotic normality of the waste-recycling estimator and show that the estimator achieves a variance
reduction over MH for certain selection probabilities (alternatively, weights). Delmas & Jourdain (2009)
calls these the Boltzmann or Barker selection kernel, and they are equivalent to those of Frenkel (2004);
Neal (2003); Tjelmeland (2004). We note that there is no fundamental need to combine the use of
multiple proposals with the weighted average approach (as is done in waste-recycling): recent Markov
chain importance sampling approaches demonstrate benefits of incorporating rejected proposals via
a weighted estimator within the single proposal framework (Rudolf & Sprungk, 202); Schuster &
Klebanov, 2020).

Next, Calderhead (2014) develops a distinct approach that (1) generates multiple proposals and (2)
simulates a finite state Markov chain, the states of which are the union of the current state and proposed
states, for a fixed number of iterations at each step. Calderhead (2014) describes criteria necessary
for the finite state Markov chain transition probabilities to satisfy detailed balance and argues that
traditional MH is a special case of this procedure that combines a single proposal with a single transition.
Calderhead (2014) does not point out the fact that the specific form of these transition probabilities
admits as a special case the form of the transition probabilities and weighting schemes shared by Frenkel
(2004); Neal (2003); Tjelmeland (2004). Unlike these previous works, Calderhead (2014) incorporates
the partially deterministic proposal schemes of the Metropolis-adjusted Langevin algorithm (MALA)
(Roberts & Stramer, 2002) and HMC into his pMCMC algorithm. Applying these schemes to logistic
regression and Bayesian inversion of an ODE, Calderhead (2014) shows, e.g., that pMCMC using
MALA or adaptive transitions (Haario et al., 2001) and 1,000 proposals enjoys 5-fold speedups over the
algorithm using a single proposal and using multiple intermediate leapfrog steps from HMC transitions
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Parallel MCMC Algorithms 9

as proposals leads to a roughly 60% decrease in Monte Carlo error. Unfortunately, Calderhead (2014)
stops short of proving the correctness of such pMCMC algorithms that leverage extended phase space
strategies, and the development of such a theoretical framework is one contribution of the present
work (Section 3).

More recently, Yang et al. (2018) extend the waste-recycling method of Frenkel (2004) to include
HMC transitions and prove that the waste-recycling estimator is unbiased and, as a Rao-Blackwellization,
leads to variance reductions over the estimator of Calderhead (2014). Yang et al. (2018) accomplish this
for two general weighting schemes, one of which is Calderhead (2014)’s generalization of, and one
of which is, that of Frenkel (2004); Neal (2003); Tjelmeland (2004). Schwedes & Calderhead (2021)
prove similar results to Yang et al. (2018) for essentially the same algorithm with the addition of an
adaptive proposal mechanism extending (Haario et al., 2001). Schwedes & Calderhead (2021) conduct
an empirical study with important consequences for the present work and show that, within the finite
state space framework of Calderhead (2014), jumping between proposed states for many iterations leads
to significantly lower Monte Carlo error. Remarkably, this study uses P finite state space iterations for
P proposals as baseline and increases the number of finite state space iterations to as many as 16P.
Extrapolating these results, one might expect that a pMCMC algorithm that uses only a single finite state
space iteration at each step would generate unbiased estimators with astronomically large variances.

Whereas Calderhead (2014); Frenkel (2004); Schwedes & Calderhead (2021); Yang et al. (2018)
generate multiple independent and identically distributed proposals, one may generate multiple proposals
that share a more complex structure. Earlier in this section, we refer to the iterative strategy of Neal
(2003) in the context of non-linear state space models, and Tjelmeland (2004) advances two additional
proposal strategies designed to maintain exchangeability between proposals. The first of these strategies,
‘Proposal alternative 1’, (1) generates a random center for the proposal distribution that itself follows
a, say, Gaussian distribution centered at the current state and (2) generates P proposals from the
same distribution with updated center. The second strategy, ‘Proposal alternative 2’, cleverly enforces
that the current state and all P proposals be equidistant from each other by iteratively generating
and carefully manipulating all proposals. Two recent works advance the two proposal alternatives of
Tjelmeland (2004). On the one hand, Luo & Tjelmeland (2019) extend the first proposal alternative
to allow proposals to share a general acyclic graphical structure. On the other hand, Holbrook (2023a)
develops a proposal mechanism that maintains equal distances between proposals; this simplicial sampler
initializes all proposals as the vertices of a high-dimensional regular simplex and rotates these vertices
according to the Haar distribution on the orthogonal group. The formal developments of Section 2 include
general, structured proposal mechanisms, and Section 4 applies this theory to the structured proposals
of Tjelmeland (2004) and Holbrook (2023a).

2. An abstract framework for pMCMC algorithms

In this section we introduce our abstract formulation of pMCMC algorithms along with rigorous
conditions that guarantee that the generated Markov chains are ergodic or, even more, reversible.
The section is organized as follows. First, Section 2.1 presents a generic definition of Metropolis-
type Markov transition kernels in this multiproposal setting. Section 2.2 then establishes general
conditions leading to the invariance or reversibility of such algorithms. Finally, Section 2.3 considers
a special but still broad case of proposal mechanisms and identifies conditions under which corre-
sponding acceptance probabilities assume a simplified proposal-independent expression. We refer to
Appendix A for various measure-theoretic elements used herein and postpone all mathematical proofs to
Appendix B.
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10 Glatt-Holtz et al.

2.1 Multiproposal MH Markov kernels

We formulate an abstract setting for multiproposal extended phase space MH kernels on general state
spaces as follows. Throughout the manuscript, we denote by Pr(X ) the set of all probability measures
on a measurable space X .

Definition 2.1 Let (X, ΣX) and (Y , ΣY) be measurable spaces and take V : X × ΣY → [0, 1] to be
a Markov kernel. Namely, we suppose that V(q, dv) ∈ Pr(Y) for each q ∈ X and q → V(q, E) is a
measurable map for each E ∈ ΣY . For each j = 0, 1, . . . , p consider measurable mappings Sj : X × Y →
X × Y and αj : X × Y → [0, 1] such that

p∑
j=0

ˆ
Y

αj(q, v)V(q, dv) = 1 for every q ∈ X. (2.1)

Then, denoting α = (α0, . . . , αp) and S = (S0, . . . , Sp), we define the multiproposal MH Markov kernel

given by (α, S,V), Pα,S,V : X × ΣX → [0, 1] as

Pα,S,V (q, dq̃) =
p∑

j=0

ˆ
Y

αj(q, v)δΠ1Sj(q,v)(dq̃)V(q, dv), (2.2)

where δΠ1Sj(q,v) is the Dirac measure concentrated at Π1Sj(q, v) and Π1 denotes the projection operator
onto the X component, i.e., Π1(q, v) = q for all q ∈ X, v ∈ Y .

As described in Section 1, this setup may be seen as a multiproposal extension to the recent work
of Glatt–Holtz et al. (2023). Algorithm 1 makes the underlying algorithmic procedure explicit. See also
Definition 3.1 in Section 3 below for an extended abstract phase space pMCMC formalism that admits
multiple jumps within a proposal set and directly generalizes the frameworks of Calderhead (2014);
Tjelmeland (2004). Note that the class of kernels identified in Definition 2.1 encompasses a wide variety
of algorithmic structures. This includes the multiproposal generalizations of random walk MH and pCN
we describe in Section 4.1 and Section 4.2. In these settings, the Sjs represent coordinate exchanges as
in (2.13), and the proposal kernels V have the conditionally independent structure (2.12). On the other
hand, Definition 2.1 also accommodates a variety of HMC-type algorithms where the Sjs are related to
the numerical integration of a Hamiltonian system associated to the target measure (see Section 4.3).

We also note that the general multiproposal algorithm specified by the transition kernel (2.2) clearly
differs from so-called hybrid MCMC strategies given by mixtures of kernels; see e.g. Robert & Casella
(1999); Tierney (1994). In the latter, one specifies a set of probabilities a1, . . . , am and Markov kernels
P1, . . . , Pm. At each iteration, one selects one of such kernels according to the given probabilities (which
may only depend on the current state) and then draws a proposal sample from the chosen kernel. In
contrast, under (2.2) with Y = Xp, one first samples a cloud of proposals v = (q1, . . . , qp) ∈ Xp

from the given proposal kernel V(q, ·), and then selects one of q, q1, . . . , qp according to probabilities
α0, . . . , αp that depend on all of q, q1, . . . , qp. See e.g. (4.22) and (4.35) below for concrete examples.

2.2 General criteria for invariance or reversibility

Our first result, Theorem 2.2, establishes a general set of conditions on the kernel V and the mappings
Sj, αj, j = 0, 1, . . . , p, under which the corresponding Markov kernel Pα,S,V maintains a given target
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Parallel MCMC Algorithms 11

probability measure μ on X invariant, or additionally that it satisfies detailed balance with respect to μ.
See Appendix B.1 for the proof.

Theorem 2.2 Let (X, ΣX) and (Y , ΣY) be measurable spaces. Fix a probability measure μ on X and a
Markov kernel V : X × ΣY → [0, 1]. Let M be the probability measure on the product space X × Y
defined by

M(dq, dv) = V(q, dv)μ(dq). (2.3)

Fix any p ≥ 1, and for each j = 0, 1, . . . , p consider the following statements for the given measurable
mappings Sj : X × Y → X × Y and αj : X × Y → [0, 1]:

(H1) Sj is an involution, i.e. Sj ◦ Sj = I, for j = 0, 1, . . . , p;

(H2) (2.1) holds and

p∑
j=0

ˆ
Y

αj(Sj(q, v))S∗
j M(dq, dv) = μ(dq); (2.4)

(H3) (2.1) holds and, for every j = 0, 1, . . . , p,1

αj(Sj(q, v))S∗
j M(dq, dv) = αj(q, v)M(dq, dv); (2.5)

where in (2.4) and (2.5) S∗
j M denotes the pushforward of M under Sj (see (A1) below in

Appendix A).
Then, under (H1) and (H2), it follows that the corresponding Markov kernel Pα,S,V : X×ΣX → [0, 1]

defined in (2.2) maintains μ as an invariant measure, i.e. μPα,S,V = μ. Moreover, (H3) implies (H2),
and under (H1) and (H3) the Markov kernel Pα,S,V additionally satisfies detailed balance with respect to
μ, i.e.

Pα,S,V (q, dq̃)μ(dq) = Pα,S,V (q̃, dq)μ(dq̃). (2.6)

Algorithm 1 describes the general sampling procedure justified by Theorem 2.2.

Remark 2.3 To allow the algorithm the possibility of staying at the current state at any given step, one
simply has to choose one of the involution mappings Sj, j = 0, 1, . . . , p, to be the identity.

In the next two corollaries, we present two possible definitions of sets of acceptance probabilities
(α0, . . . , αp) satisfying property (H3), and hence (H2), in Theorem 2.2. Specifically, the αjs defined in
Corollary 2.4 are of Barker-type (Barker, 1965), whereas the ones in Corollary 2.6 correspond to the MH
type (Hastings, 1970; Metropolis et al., 1953), cf. 2.8 and (2.10)–(2.11), respectively. See Appendix B.2
and Appendix B.3 for the proofs.

Corollary 2.4 Let (X, ΣX) and (Y , ΣY) be measurable spaces. Fix any μ ∈ Pr(X), a Markov kernel
V : X × ΣY → [0, 1], and let M ∈ Pr(X × Y) be given by M(dq, dv) = V(q, dv)μ(dq). Further, let

1 Equivalently,
´

X×Y ϕ(q, v)αj(Sj(q, v))S∗
j M(dq, dv) = ´

X×Y ϕ(q, v)αj(q, v)M(dq, dv) for every bounded and measurable
function ϕ : X × Y → R.
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12 Glatt-Holtz et al.

Algorithm 1

1: Select the algorithm parameters:

(i) The proposal kernelV(q, dv).

(ii) The mappings Sj, αj,j = 0, 1, . . . , p, satisfying (H1) and (H2), or(H1) and (H3).

2: Choose q(0) ∈ X.
3: for k ≥ 0 do
4: Sample v(k+1) ∼ V(q(k), ·).
5: Compute Sj(q

(k), v(k+1)), for j = 0, 1, . . . , p.

6: Set q(k+1) by drawing from (�1S0(q
(k), v(k+1)), . . . , �1Sp(q

(k), v(k+1)))according to the proba-
bilities

(α0(q
(k), v(k+1)), . . . ,αp(q

(k), v(k+1))).
7: k → k + 1.
8: end for

Sj : X × Y → X × Y , j = 0, 1, . . . , p, be measurable mappings satisfying the involution assumption (H1)
of Theorem 2.2. Assume additionally that, for every j = 0, 1, . . . , p,

p∑
k=0

(Sj ◦ Sk)
∗M(E) =

p∑
k=0

S∗
kM(E) for allE ∈ ΣX×Y . (2.7)

Also, let αj : X × Y → [0, 1], j = 0, . . . , p, be any measurable functions such that (2.1) holds and

αj(q, v) = dS∗
j M

d(S∗
0M + · · · + S∗

pM)
(q, v) (2.8)

for
(∑p

j=0 S∗
j M

)
-a.e. (q, v) ∈ X × Y . Then, under this setting, it follows that condition (H3) of

Theorem 2.2 is satisfied (and consequently also (H2)). Therefore, the associated Markov kernel Pα,S,V :
X × ΣX → [0, 1] given in (2.2), with αj as defined in (2.8), satisfies detailed balance with respect to μ

and thus maintains μ as an invariant measure.

Remark 2.5 Under the additional assumption that S∗
j M 
 M for j = 0, . . . , p, (2.8) may be written as

αj(q, v) =
dS∗

j M
dM (q, v)

dS∗
0M

dM (q, v) + · · · + dS∗
pM

dM (q, v)

, for j = 0, . . . , p. (2.9)

On the other hand, the condition S∗
j M 
 M is not required for Corollary 2.4.

Corollary 2.6 Let (X, ΣX) and (Y , ΣY) be measurable spaces. Fix any μ ∈ Pr(X), a Markov kernel
V : X × ΣY → [0, 1], and let M ∈ Pr(X × Y) be given by M (dq, dv) = V (q, dv)μ(dq). Further, set
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Parallel MCMC Algorithms 13

S0 := I, and let Sj : X × Y → X × Y , j = 1, . . . , p, be measurable mappings satisfying assumption (H1)
of Theorem 2.2 and such that S∗

j M 
 M . Consider a collection of weights αj ∈ R
+, j = 1, . . . , p,

satisfying
∑p

j=1 αj ≤ 1. Moreover, for each j = 0, 1, . . . , p define mappings αj : X × Y → [0, 1] given
by

αj(q, v) := αj

[
1 ∧ dS∗

j M

dM
(q, v)

]
, j = 1, . . . , p, (2.10)

α0(q, v) := 1 −
p∑

j=1

αj(q, v), (2.11)

for all (q, v) ∈ X×Y . Then, conditions (H2) and (H3) of Theorem 2.2 hold. Consequently, the associated
Markov kernel Pα,S,V : X × ΣX → [0, 1] given in (2.2), with αj as defined in (2.10)–(2.11), satisfies
detailed balance with respect to μ and thus maintains μ as an invariant measure.

Remark 2.7 In the setting of Corollary 2.6, a natural choice of weights would be αj = 1/p, for all
j = 1, . . . , p. Under this specification, equations reminiscent of (2.10) and (2.11) appear in Calderhead
(2014), albeit with no formal justification.

Remark 2.8 We notice that Corollary 2.6 encompasses Theorem 2.1 of Glatt–Holtz et al. (2023) for the
case p = 1.

2.3 The case of conditionally independent proposals

Here, we specialize to a particular subclass of kernels falling under the wider umbrella of Definition 2.1.
This setting encompasses and generalizes algorithms found in Tjelmeland (2004). Meanwhile, it permits
the derivation of new Hilbert space-type algorithms. See Section 4.1 and Section 4.2 respectively below.

We specify the elements (α, S, V ) composing the kernel Pα,S,V in (2.2) of Definition 2.1 as follows.
Let (X, ΣX) be a measurable space, and fixing p ≥ 1, we take Y = Xp to be the p-fold product of X that
we endow with the standard product σ -algebra. Fixing any two Markov kernels Q, Q : X ×ΣX → [0, 1],
we take

V (q0, dv) = V (q0, dq1, . . . , dqp) =
ˆ

X

p∏
i=1

Q(q, dqi)Q(q0, dq), for v = (q1, . . . , qp) ∈ Xp, (2.12)

and then consider the flip involutions Sj : Xp+1 → Xp+1, j = 0, . . . , p, given by

S0 := I, and Sj(q0, v) = Sj(q0, q1, . . . , qp) := (qj, q1, . . . , qj−1, q0, qj+1, . . . , qp), (2.13)

for all (q0, v) ∈ X×Xp and j = 1, . . . , p. We refer to this class of proposal kernels defined by (2.12), (2.13)
as having a conditionally independent structure. Viewed algorithmically, one makes such a proposal by
drawing from Q from around the current state and then using this new point we generate a cloud of
p proposal points according to Q in a conditionally independent fashion. The main advantage of this
proposal structure is that under suitable assumptions on the kernels Q, Q it can lead to simplified and more
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14 Glatt-Holtz et al.

Algorithm 2

1: Select the algorithm parameters:

(i) The proposal kernels Q, Q : X × ΣX → [0, 1].

(ii) The mappings αj, j = 0, 1, . . . , p, satisfying (H2) (invariance only) or (H3) (reversibility).
Here, M , V , and Sj, j = 0, 1, . . . , p, are as in (2.3), (2.12), and (2.13), respectively. Note that αj
may always be specified as in (2.8) (Theorem 2.10) and see also (2.17), (2.18).

2: Choose q(0)
0 ∈ X.

3: for k ≥ 0 do
4: Sample q̄ ∼ Q(q(k)

0 , ·).
5: Sample q(k+1)

j ∼ Q(q̄, ·) independently, for j = 1, . . . , p. Set v(k+1) := (q(k+1)
1 , . . . , q(k+1)

p ).

6: Set q(k+1)
0 by drawing from (q(k)

0 , q(k+1)
1 , . . . , q(k+1)

p ) according to the probabilities

(α0(q
(k)
0 , v(k+1)), . . . , αp(q

(k)
0 , v(k+1))).

7: k → k + 1.
8: end for

computationally efficient expressions for the acceptance probabilities αj, j = 0, 1, . . . , p as we illustrate
in Theorem 2.11 and Corollary 2.12 below (see also Section 4.1). Algorithm 2 makes the associated
sampling procedure precise.

Remark 2.9 The proposal formulation in (2.12) allows for the particular case where q1, . . . , qp
are directly and independently drawn from a probability distribution Q(q0, ·), by simply choosing
Q(q0, dq) := δq0

(dq). Note, however, that the condition (2.15) below typically leads to more computa-
tionally tractable acceptance probabilities. Compare for example (4.8) and (4.11) below in Section 4.1.
In any case if we take Q(q0, ·) to be independent of q0, Algorithm 2 yields a multiproposal version of
the standard independence sampler algorithm.

The following result states that under the choices of V and S given in (2.12) and (2.13), and for a
given target measure μ, condition (2.7) of Corollary 2.4 is guaranteed to hold. Thus, by supplementing
such V and S with Barker-like acceptance probabilities α as (2.8) one obtains a Markov transition kernel
Pα,S,V as in (2.2) resulting from Algorithm 2 that satisfies detailed balance with respect to μ.

Theorem 2.10 Fix any p > 0, μ ∈ Pr(X) and Markov kernels Q, Q : X × ΣX → [0, 1]. Define another
Markov kernel V : X × ΣXp → [0, 1] as in (2.12) and let M ∈ Pr(Xp+1) be given as M (dq0, dv) =
V (q0, dv)μ(dq0). Further, let Sj : Xp+1 → Xp+1 be the involution mappings defined in (2.13). Then,
for every j = 0, 1, . . . , p, it holds that

p∑
k=0

(Sj ◦ Sk)
∗M (E) =

p∑
k=0

S∗
kM (E) for all E ∈ ΣXp+1 . (2.14)

Therefore, the associated Markov kernel Pα,S,V : X × ΣX → [0, 1] given in (2.2), with αj as defined in
(2.8), satisfies detailed balance with respect to μ.

The proof of Theorem 2.10 is provided below in Section B.4.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/8/2/tnae004/7738435 by U

niversity of C
alifornia, Los Angeles user on 06 N

ovem
ber 2024



Parallel MCMC Algorithms 15

The next theorem considers a particular setting in Theorem 2.10. Specifically, it identifies suitable
conditions on the target measure μ and the Markov kernels Q, Q that imply that S∗

j M is absolutely
continuous with respect to M and for which the Radon–Nikodym derivative dS∗

j M /dM assumes an

explicit expression depending on μ but which is independent of the kernels Q, Q. This in turn yields in
Corollary 2.12 simplified expressions for the acceptance probabilities αj, j = 0, 1, . . . , p from (2.8) and

(2.10)–(2.11) that are independent of Q, Q, a crucial property for effective applications.

Theorem 2.11 Fix any p > 0, μ ∈ Pr(X), and Markov kernels Q, Q : X × ΣX → [0, 1]. Define another
Markov kernel V : X × ΣXp → [0, 1] as in (2.12). Take M ∈ Pr(Xp+1) given by M (dq0, dv) =
V (q0, dv)μ(dq0), and let Sj : Xp+1 → Xp+1, j = 0, 1, . . . , p, be the involution mappings defined in
(2.13).

Suppose μ 
 μ0 for some σ -finite measure μ0 on X, with dμ
dμ0

(q) > 0 for a.e. q ∈ X. Additionally,

assume that Q and Q satisfy the following balance-type condition

Q(q, dq̃)μ0(dq) = Q(q̃, dq)μ0(dq̃). (2.15)

Then, for every j = 0, 1, . . . , p, S∗
j M 
 M and

dS∗
j M

dM
(q0, v) = dμ

dμ0
(qj)

(
dμ

dμ0
(q0)

)−1

for M -a.e.(q0, v) = (q0, q1, . . . , qp) ∈ X × Xp. (2.16)

See Appendix B.5 for the proof of Theorem 2.11. The next corollary follows immediately by plugging
(2.16) into the expressions (2.9) and (2.10).

Corollary 2.12 Under the assumptions of Theorem 2.11, it follows that by defining for any (q0, v) =
(q0, q1, . . . , qp) ∈ X × Xp

αj(q0, v) =
dμ
dμ0

(qj)∑p
k=0

dμ
dμ0

(qk)
, j = 0, 1, . . . , p, (2.17)

or

αj(q0, v) = αj

[
1 ∧

dμ
dμ0

(qj)

dμ
dμ0

(q0)

]
, j = 1, . . . , p; α0(q0, v) = 1 −

p∑
j=1

αj(q0, v), (2.18)

with αj ∈ R
+ such that

∑p
j=1 αj ≤ 1, then the associated kernel Pα,S,V : X × ΣX → [0, 1], given as in

(2.2), satisfies detailed balance with respect to μ.

Remark 2.13 One may obtain kernels Q, Q satisfying (2.15) by selecting any measurable f : X × X →
R

+ such that

ˆ
X

f (q, q̃)μ0(dq̃) = 1 =
ˆ

X
f (q̃, q)μ0(dq̃),
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16 Glatt-Holtz et al.

for any q ∈ X and then defining Q, Q : X × ΣX → [0, 1] according to

Q(q, dq̃) = f (q, q̃)μ0(dq̃), Q(q, dq̃) = f (q̃, q)μ0(dq̃). (2.19)

Of course, in the case that f is symmetric, namely that f (q, q̃) = f (q̃, q) for every q, q̃ ∈ X, then Q = Q.

3. Incorporating multiple jumps between proposals

Whereas the previous section develops a rigorous framework for pMCMC methods that make a single
jump from the current state to one of multiple proposals, Calderhead (2014) presents an algorithm
that allows for multiple resamples from a generated proposal set. This section develops a rigorous
‘extended phase space’ multiple proposal, multiple jump formalism. In particular, we show that
the setup considered in Calderhead (2014); Tjelmeland (2004) permits an involutive, abstract state
space generalization inclusive of HMC and Hilbert space settings previously unaddressed. Indeed our
formulation, culminating in Theorem 3.3 and Algorithm 3, justifies drawing multiple samples from a
given proposal cloud in a wide variety of contexts as we sketch below in Section 4. Note that, from
a practical standpoint, making multiple jumps within a proposal set may be beneficial, insofar as the
computational burden is not much greater than the cost imposed for a single jump: one must always
evaluate the target density at all proposal points regardless of the number of jumps one intends to make.

3.1 An augmented extended phase space formulation

Just as for Definition 2.1, we let (X, ΣX) and (Y , ΣY) be measurable spaces and fix p ≥ 1, the number
of proposals at each step. We take

z = (w, k) = (q, v, k) ∈ Z := X × Y × {0, . . . , p}, (3.1)

and, as above, we define Π1 : X × Y → X as Π1(q, v) = q, the projection onto the X coordinate.
We define transition kernels on Z as follows:

Definition 3.1 For j = 0, 1, . . . , p, we consider

Vj : X × ΣY → [0, 1] to be Markov kernels (3.2)

and take

Sj : X × Y → X × Y to be measurable mappings. (3.3)

(i) Let R : Z × ΣZ → [0, 1] be the Markov kernel defined by

R(q, v, k, dq̃, dṽ, dk̃) = S∗
k (Vk(Π1Sk(q, v), dṽ)δΠ1Sk(q,v)(dq̃))δk(dk̃). (3.4)

(ii) Let us furthermore suppose that for k, j = 0, . . . , p we have αk,j : X × Y → [0, 1] such that

p∑
j=0

αk,j(q, v) = 1, for all k = 0, . . . , p and (q, v) ∈ X × Y . (3.5)
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Parallel MCMC Algorithms 17

We then define A : Z × ΣZ → [0, 1] as the Markov kernel given by

A (q, v, k, dq̃, dṽ, dk̃) = δ(q,v)(dq̃, dṽ)

p∑
j=0

αk,j(q, v)δj(dk̃). (3.6)

(iii) We denote the composition kernel

P1(z, dz̃) = P(z, dz̃) := RA (z, dz̃) =
ˆ

Z
A (ẑ, dz̃)R(z, dẑ) (3.7)

and furthermore iteratively define, for any n ≥ 1,

Pn(z, dz̃) := Pn−1A (z, dz̃) =
ˆ

Z
A (ẑ, dz̃)Pn−1(z, dẑ) (3.8)

(iv) Finally, we consider the projection operator E : Z → X as

E (q, v, k) = Π1Sk(q, v). (3.9)

We thus specify the kernels R, A , Pn and the projection E by the triple (V e, S, α) where V e =
(V0, . . . , Vp), S = (S0, . . . , Sp) and α = (αj,k)j,k=0,...,p. For a given (V e, S, α) and any n ≥ 1, (3.8)

and (3.9) yields a sampling procedure by taking, for any m ≥ 1, r(m) ∼ E ∗[(Pn)
jPl](z, dq) where

m = nj + l for the appropriate j, l ≥ 0, and (Pn)
j denotes the j-fold composition of Pn. Algorithm 3

describes this procedure.

Remark 3.2 For each (q, v) ∈ X × Y , let A(q, v) be the (p + 1) × (p + 1) real matrix with entries
Ak,j(q, v) := αk,j(q, v), k, j = 0, . . . , p. It is not difficult to show the following alternative expression for
the kernel Pn, n ≥ 1:

Pn(z, dz̃) = Pn(q, v, k, dq̃, dṽ, dk̃) (3.10)

=
ˆ

Y
δSk(Π1Sk(q,v),v̂)(dq̃, dṽ)

p∑
j=0

An
k,j(Sk(Π1Sk(q, v), v̂))δj(dk̃)Vk(Π1Sk(q, v), dv̂),

where An
k,j(q, v), k, j = 0, . . . , p, denote the entries of the matrix An(q, v), i.e., the n-fold composition of

A(q, v). Now denote by A∞(q, v) the matrix with entries A∞
k,j(q, v) = α∞

j (q, v) for all k, j = 0, . . . , p,
where (α∞

j (q, v))j=0,...,p is the stationary vector of the finite state Markov chain with transition matrix
A(q, v). Notice that one obtains by formally taking the limit n → ∞ in (3.10) the following Markov
kernel

P∞(z, dz̃) :=
ˆ

Y
δSk(Π1Sk(q,v),v̂)(dq̃, dṽ)

p∑
j=0

α∞
j (Sk(Π1Sk(q, v), v̂))δj(dk̃)Vk(Π1Sk(q, v), dv̂),

which corresponds to the one-step transition kernel of the algorithm introduced in Calderhead (2014).
Moreover, observe that when αk,j is k-independent then it follows from condition (3.5) that An = A for
all n, so that A = A∞.
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18 Glatt-Holtz et al.

Algorithm 3

1: Select the algorithmic parameters

(i) p ≥ 1 the number of elements generated in each proposal cloud.

(ii) The proposal kernels V e = (V0, . . . , Vp) as in (3.2).

(iii) The mappings S = (S0, . . . , Sp) as in (3.3)

(iv) The transition probabilities α = (αk,j)j,k=0,...,p as in (3.5).

(v) The n ≥ 1 number of samples drawn per generated proposal cloud.

2: Choose an initial (q(0), v(0)) ∈ X × Y and k(0) ∈ {0, . . . , p}.
3: Set r(0) := Π1Sk(0) (q(0), v(0)).
4: for j ≥ 0 do
5: Set q̄(j+1) := r(nj).
6: Sample v̄(j+1) ∼ Vk(j) (q̄(j+1), dv).
7: Set (q(j+1), v(j+1)) := Sk(j) (q̄(j+1), v̄(j+1)).
8: Set kcur := k(j).
9: for l = 1, . . . , n do

10: Draw knxt ∈ {0, . . . , p} with the probabilities (αkcur ,0(q
(j+1), v(j+1)), . . . , αkcur ,p(q

(j+1), v(j+1))).
11: Set kcur := knxt.
12: Set r(nj+l) := Π1Skcur

(q(j+1), v(j+1)).
13: l → l + 1.
14: end for
15: Set k(j+1) = kcur.
16: j → j + 1.
17: end for

3.2 Main result

We turn to the main result of this section, Theorem 3.3. Consider a given target measure μ ∈ Pr(X).
Having fixed V e = (V0, . . . , Vp) and S = (S0, . . . , Sp) as in (3.2) and (3.3), we denote

Mj(dq, dv) = Vj(q, dv)μ(dq), j = 0, . . . , p. (3.11)

We then consider the following extended phase space measure

N (dq̃, dṽ, dk̃) =
p∑

j=0

1

p + 1
S∗

j Mj(dq̃, dṽ)δj(dk̃). (3.12)

Theorem 3.3 establishes conditions on the elements (V e, S, α) such that N is invariant under A , R and
hence under Pn for any n ≥ 0. This result furthermore asserts that E N = μ so that we indeed have
conditions justifying Algorithm 3 as an unbiased sampling procedure.

Theorem 3.3 Let V e = (V0, . . . , Vp) be a collection of Markov kernels as in (3.2), S = (S0, . . . , Sp)

measurable mappings as in (3.3) and α = (αk,j)k,j=0,...,p acceptance probabilities as in (3.5). Let also
μ ∈ Pr(X) and define probability measures Mj, j = 0, . . . , p, on X × Y as in (3.11). We assume that
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Parallel MCMC Algorithms 19

(H1) Sj is an involution, namely we suppose that Sj ◦ Sj = I, for j = 0, 1, . . . , p; and

(H2) (3.5) holds and

S∗
j Mj(dq, dv) =

p∑
k=0

αk,j(q, v)S∗
kMk(dq, dv), for each j = 0, . . . , p. (3.13)

Under these conditions, define the Markov kernels R, A on Z as in (3.4) and (3.6), respectively.
Take Pn as in (3.7), (3.8) for any n ≥ 1. Then:

(i) N is invariant under R;

(ii) N is invariant under A ;

(iii) N is invariant under Pn for any n ≥ 1;

(iv) E ∗N = μ, and therefore E ∗(N Pn) = μ for any n ≥ 1.

The proof of Theorem 3.3 is found below in Appendix B.6.

Remark 3.4 Under (3.5), the condition on the acceptance probabilities (3.13) is implied by the following
slightly stronger condition

αk,j(q, v)S∗
kMk(dq, dv) = αj,k(q, v)S∗

j Mj(dq, dv), for every k, j = 0, . . . , p. (3.14)

Next, we identify two examples of sets of acceptance probabilities αk,j, k, j = 0, . . . , p, for which
condition (H2) of Theorem 3.3 holds. In fact, both cases satisfy the stronger condition (3.14). The proof
follows similarly as in Corollary 2.4 and Corollary 2.6, so we omit the details.

Corollary 3.5 Take μ, V e = (V0, . . . , Vp), S = (S0, . . . , Sp), and Mj, j = 0, . . . , p, as in Theorem 3.3.
Consider the following definitions:

(i) Let αk,j : X × Y → [0, 1], k, j = 0, . . . , p, be any measurable mappings such that (3.5) holds
and

αk,j(q, v) = dS∗
j Mj

d(S∗
0M0 + · · · + S∗

pMp)
(q, v), (3.15)

for (S∗
0M0 + . . . + S∗

pMp)-a.e. (q, v) ∈ X × Y , and for every k = 0, . . . , p.

(ii) Assume S∗
j Mj 
 S∗

kMk for all k 
= j. Take αk,j ∈ [0, 1], k, j = 0, . . . , p, such that
∑p

j=0 αk,j ≤ 1
for all k = 0, . . . , p. Then, for each k, j = 0, . . . , p and (q, v) ∈ X × Y , define

αk,j(q, v) =

⎧⎪⎨⎪⎩
αk,j

[
1 ∧ dS∗

j Mj

dS∗
kMk

(q, v)

]
if j 
= k,

1 −∑p
l=0
l 
=k

αk,l(q, v) if j = k.
(3.16)

Then, under the conditions in (i) and (ii), it follows that both definitions (3.15) and (3.16) satisfy
properties (3.5) and (3.14), and consequently also assumption (H2) of Theorem 3.3.
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20 Glatt-Holtz et al.

Remark 3.6 Note that any collection of k-independent αk,js that satisfy condition (3.13) must coincide
(S∗

0M0 + . . . + S∗
pMp)-a.e. with the Barker-like expression in (3.15).

Remark 3.7 Similarly as in Corollary 2.12, we obtain that under an analogous conditionally independent
framework from Theorem 2.11 the definitions in (3.15) and (3.16) assume a simplified expression.
Indeed, take Y = Xp and suppose μ 
 μ0 for some σ -finite measure μ0 on X, with dμ

dμ0
(q) > 0 for a.e.

q ∈ X. Assume that V0 = . . . = Vp =: V , with V as in (2.12) for fixed Markov kernels Q, Q satisfying
(2.15), and let M (dq, dv) = V (q, dv)μ(dq). Moreover, take Sj, j = 0, . . . , p to be the flip involutions
defined in (2.13). It thus follows from Theorem 2.11 that S∗

j M 
 M for j = 0, . . . , p and (2.16) holds,
so that (3.15) and (3.16) reduce for any (q0, v) = (q0, q1, . . . , qp) ∈ X × Xp and k, j = 0, . . . , p to

αk,j(q0, v) =
dμ
dμ0

(qj)∑p
l=0

dμ
dμ0

(ql)
, (3.17)

and

αk,j(q0, v) =

⎧⎪⎪⎨⎪⎪⎩
αk,j

[
1 ∧

dμ
dμ0

(qj)

dμ
dμ0

(qk)

]
if j 
= k,

1 −∑p
l=0
l 
=k

αk,l(q, v) if j = k,
(3.18)

respectively.

Remark 3.8 One might expect that, by setting the number of jumps n = 1, Algorithm 3 would essentially
reduce to Algorithm 1. In fact, this seems to not be the case in general, owing crucially to step 7 in
Algorithm 3. See Section 4.3, Remark 4.3, below for a specific example of this non-equivalence.

Nevertheless, there is a particular case where a suitable relationship between these two algorithms can
be established. Indeed, assume the same setting from Remark 3.7, and let also αj = αk,j, k, j = 0, . . . , p,

be the acceptance probabilities given as in (3.17). Then, denoting P = Pα,S,V the corresponding kernel
as defined in (2.2), it is not difficult to show that

Pm(Π1Sk(q, v), dq̃) = E ∗(Pn)
m(q, v, k, ·)(dq̃) for all (q, v) ∈ X × Xp, and m, n ∈ N, (3.19)

so that, setting in particular n = 1 and k = 0, we have Pm(q, dq̃) = E ∗Pm(q, v, 0, ·)(dq̃) for all
(q, v) ∈ X × Xp and m ∈ N. To show (3.19), one first crucially notices that due to αk,j given in (3.17)
being k-independent and also property (3.5) then it follows that the matrix A(q, v) with entries αk,j(q, v),
k, j = 0, . . . , p, satisfies An(q, v) = A(q, v) for all n ∈ N. Secondly, from the definitions of the flip
involutions Sj, j = 0, . . . , p, in (2.13), and αj = αk,j given in (3.17), it follows immediately that, for any
k, j = 0, . . . , p and (q0, v) = (q0, q1, . . . , qp) ∈ X × Xp, αj(Sk(q0, v)) is equal to: αk(q0, v) if j = 0;
α0(q0, v) if j = k; and αj(q0, v) for j ∈ {1, . . . , p} with j 
= k. In essence, this nullifies the effect of

step 7 in Algorithm 3, and ultimately implies that the samples {q(i)}i∈N generated by Algorithm 1 are

equivalent to the chain {Π1Sk(i) (q(i)
0 , v(i))}i∈N derived from the samples {(q(i)

0 , v(i), k(i))}i∈N generated by
Algorithm 3.
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Parallel MCMC Algorithms 21

4. Applications for algorithm design

This section leverages our abstract formalisms developed in Section 2, Section 3 in service of the design
and rigorous analysis of some concrete sampling algorithms. In Section 4.1 we provide a systematic
treatment of multiproposal methods for continuous probability distributions on R

N . This treatment
generalizes previously observed finite dimensional methods from e.g. Tjelmeland (2004) to include non-
symmetric proposal kernels. Next in Section 4.2 we derive a novel ‘Hilbert-space’ method, which we
christen the multiproposal pCN (mpCN) sampler in Algorithms 5 and 6. As already previewed above
in the introduction, mpCN extends the preconditioned Crank-Nicolson algorithm designed for infinite-
dimensional target measures that are absolutely continuous with respect to a Gaussian base measure
(Beskos et al., 2008; Cotter et al., 2013) to a multiproposal setting. Elsewhere in Section 4.3 we address
applications for Hamiltonian-type sampling methods while in Section 4.4 we consider simplicial methods
developed recently in Holbrook (2023a).

4.1 Finite-dimensional multiproposal algorithms

In this subsection, we consider the particular case of finite-dimensional, continuously distributed
measures in the algorithms presented in Section 2 and Section 3 above. We then rewrite the formulas for
the acceptance probabilities previously introduced in terms of the associated probability densities, thus
providing more directly applicable expressions. In all such formulas presented below, namely (4.2), (4.3),
(4.7), (4.11), (4.12), (4.13) and (4.14), the acceptance probability is defined by the given expression at
every point where the denominator is strictly positive, and otherwise the probability is assumed to be zero.

Take X = R
N and Y = R

D for some N, D > 0, endowed with their corresponding Borel σ -algebras.
Consider a target distribution

μ(dq) = π(q)dq for some density function π : RN → R
+. (4.1)

Following the framework from Section 2.2, take a Markov kernel V (q, dv) = g(q, v)dv for some
measurable function g : RN+D → R

+ with
´
RD g(q, v)dv = 1 for all q ∈ R

N . It follows that

M (dq, dv) = V (q, dv)μ(dq) = h(q, v) dq dv, with h(q, v) = g(q, v)π(q).

Then, given any C1 involution mappings Sj : RN+D → R
N+D, j = 0, 1 . . . , p, it follows from (A3) that

S∗
j M (dq, dv) = h(Sj(q, v))| det ∇Sj(q, v)|dqdv, j = 0, 1, . . . , p.

In this situation Corollary 2.4 and Corollary 2.6 yield the following general formulations. In the case
of Corollary 2.4 the condition (2.7) translates to

p∑
k=0

h(Sk ◦ Sj(q, v))| det ∇(Sk ◦ Sj)(q, v)|dqdv =
p∑

k=0

h(Sk(q, v))| det ∇Sk(q, v)| dq dv,

for all j = 0, . . . , p. In this circumstance we obtain a reversible sampling scheme from Algorithm 1 by
supplementing the input parameters V , (S0, . . . , Sp) with acceptance probabilities αj, j = 0, 1, . . . , p,
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22 Glatt-Holtz et al.

given as in (2.8), which according to (A4) can be written here as

αj(q, v) = h(Sj(q, v))| det ∇Sj(q, v)|∑p
l=0 h(Sl(q, v))| det ∇Sl(q, v)| , (q, v) ∈ R

N × R
D. (4.2)

Alternatively, in the setting of Corollary 2.6 we assume that S0 = I and consider the αjs in (2.10)–(2.11),
given here by

αj(q, v) = αj

[
1 ∧ h(Sj(q, v))| det ∇Sj(q, v)|

h(q, v)

]
, j = 1, . . . , p ; α0(q, v) := 1 −

p∑
j=1

αj(q, v) (4.3)

for (q, v) ∈ R
N × R

D, where we recall that αj ∈ [0, 1], j = 1, . . . , p, are any user defined weights

satisfying
∑p

j=1 αj ≤ 1.
Let us now turn to the ‘conditionally independent’ setting of Section 2.3. We will provide the details

for the case of Barker-type acceptance probabilities, à la (4.2), which we anticipate as being the most
relevant in this particular setting. The reader will find the analogous reduction from (4.3) for the MH
case to be direct, following from the same considerations.

In this conditionally independent situation we take Y = R
pN and consider Markov kernels of the

form

Q(q, dq̃) = f (q, q̃)dqdq̃ and Q(q, dq̃) = f (q, q̃)dqdq̃. (4.4)

Here, f : R2N → R
+ and f : R2N → R

+ are measurable functions such that

ˆ
RN

f (q, q̃)dq̃ = 1 =
ˆ
RN

f (q, q̃)dq̃ for every q ∈ R
N . (4.5)

In this setting, the Markov kernel V from (2.12) can be written as

V (q0, dv) = g(q0, v)dv, with g(q0, v) =
ˆ
RN

p∏
i=1

f (q, qi)f (q0, q)dq (4.6)

for all q0 ∈ R
N and v = (q1, . . . , qp) ∈ R

pN . We notice that the assumed conditions on f , f imply

that
´
RNp g(q0, v)dv = 1 for all q0 ∈ R

N , so that V indeed defines a Markov kernel. We also fix Sj :

R
(p+1)N → R

(p+1)N , j = 0, 1, . . . , p, to be the flip involutions defined in (2.13). Since these involutions
are also linear, it is not difficult to see that each Sj is volume-preserving, i.e. | det ∇Sj(q, v)| = 1 for all

(q, v) ∈ R
(p+1)N .

We thus obtain the following particular expressions for the acceptance probabilities αj, j =
0, 1, . . . , p, from (4.2) in this setting, which when input into Algorithm 2 yield a reversible sampling
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Parallel MCMC Algorithms 23

procedure:

αj(q0, v) =
π(qj)

´
RN

∏p
i=0
i 
=j

f (q, qi)f (qj, q)dq∑p
l=0 π(ql)

´
RN

∏p
i=0
i 
=l

f (q, qi)f (ql, q)dq
, (4.7)

for (q0, v) = (q0, q1, . . . , qp) ∈ R
N × R

pN . Note that we can also consider the particular case

where Q(q, ·) = δq(·). Of course, in this case there is no density f with respect to Lebesgue measure
as δq is not continuously distributed. Nevertheless, it follows immediately from (2.12) that V (q0, dv) =∏p

i=1 f (q0, qi)dv for v = (q1, . . . , qp), so that (4.2) now reduces to

αj(q0, v) =
π(qj)

∏p
i=0
i 
=j

f (qj, qi)∑p
k=0 π(qk)

∏p
i=0
i 
=k

f (qk, qi)
, (4.8)

again for any (q0, v) = (q0, q1, . . . , qp) ∈ R
N × R

pN .
The acceptance probabilities (4.7) and (4.8) are expensive or intractable to compute in many

situations that highlights the salience of Theorem 2.11 here. Within this setting of Theorem 2.11, let
us assume for simplicity that μ0(dq) is the Lebesgue measure dq, so that dμ/dμ0(q) = π(q) for a.e.
q ∈ R

N . Let us also assume that π(q) > 0 for a.e. q ∈ R
N . Moreover, we now suppose that the densities

f , f associated to Q, Q, respectively, satisfy (2.15), or equivalently in this setting

ˆ
A

ˆ
B

f (q, q̃) dq̃ dq =
ˆ

B

ˆ
A

f (q̃, q) dq dq̃ for every Borel sets A, B ⊂ R
N . (4.9)

Note that this condition, (4.9), is satisfied if we find any f such that

ˆ
RN

f (q, q̃)dq̃ = 1 =
ˆ
RN

f (q̃, q)dq̃ for any q ∈ R
N , (4.10)

and then we set f (q̃, q) := f (q, q̃). In particular, one may select f (q, q̃) = r(q − q̃) for any probability
density r : R

N → R
+. In this case, the simplified acceptance probabilities αj, j = 0, 1, . . . , p, from

(2.17) can be written as

αj(q0, v) = π(qj)∑p
l=0 π(ql)

, (4.11)

for (q0, v) = (q0, q1, . . . , qp) ∈ R
(p+1)N . Notice that in the special case f (q̃, q) := f (q, q̃), and under

(4.10), the formula (4.11) is immediately obtained from (4.7).
We highlight this particular case of interest arising out of Theorem 2.11 from (4.9) and (4.11) as

Algorithm 4. This sampler is the basis for the numerical experiments carried out below in Section 5.1.

Remark 4.1 Algorithm 4 includes as a special case the proposal structure considered in (Tjelmeland,
2004, Section 3). Specifically the method in Tjelmeland (2004) corresponds to the special case Q = Q,
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24 Glatt-Holtz et al.

Algorithm 4

1: Select the algorithmic parameters:

(i) Any measurable function f , f : R
2N → R

+ maintaining (4.9), which we use to define the
proposal mechanism. In particular, one may consider any probability density r : RN → R

+ and
set f (q, q̃) = r(q − q̃), f (q, q̃) = r(q̃ − q).

(ii) the number of proposals p ≥ 1.

2: Choose q(0)
0 ∈ R

N .
3: for k ≥ 0 do
4: Sample q̄(k) ∼ f (q(k)

0 , q̃)dq̃

5: Sample q(k+1)
j ∼ f (q̄(k), q̃, )dq̃, for j = 1, . . . , p. Set v(k+1)

0 := (q(k+1)
1 , . . . , q(k+1)

p ).

6: Set q(k+1)
0 by drawing from (q(k)

0 , q(k+1)
1 , . . . , q(k+1)

p ) according to the probabilities

(α0(q
(k)
0 , v(k+1)), . . . , αp(q

(k)
0 , v(k+1))) as defined in (4.11).

7: k → k + 1.
8: end for

so that f = f , and where f (q, ·) is taken as the density of a multivariate Gaussian centered at q. Notice that
since such an f = f (q, q̃) is symmetric in the variables q, q̃ it is clear that (4.10) holds trivially in this case.
Aside from Theorem 2.11 being given in the broader context of general state spaces, yielding for example
mpCN in Algorithm 5 below, it also shows that the simplified expression of acceptance probabilities in
(4.11) can be obtained from arbitrary, even non-symmetric proposal densities f (q, q̃) := r(q − q̃), by
choosing f (q, q̃) := f (q̃, q) as in Algorithm 4.

Finally, let us specialize the setting of Section 3 to the case of finite-dimensional continuously
distributed measures. We start by considering again the spaces X = R

N , Y = R
D, for N, D > 0, a target

distribution μ(dq) = π(q)dq, and generic involution mappings Sj : RN+D → R
N+D, j = 0, . . . , p. Then,

consider Markov proposal kernels Vj(q, dv) = gj(q, v) dv, j = 0, . . . , p. Here, each gj : RN+D → R
+ is

a measurable function satisfying
´
RD gj(q, v)dv = 1 for all q ∈ R

N . We define

Mj(dq, dv) = Vj(q, dv)μ(dq) = hj(q, v) dq dv, with hj(q, v) := gj(q, v)π(q), j = 0, . . . , p.

We thus obtain from (3.15) and (3.16) the following examples of acceptance probabilities that yield an
unbiased sampling scheme according to Algorithm 3. Namely, for all k, j = 0, . . . , p:

αk,j(q, v) = hj(Sj(q, v))| det ∇Sj(q, v)|∑p
l=0 hl(Sl(q, v))| det ∇Sl(q, v)| , (4.12)

and

αk,j(q, v) =
⎧⎨⎩αk,j

[
1 ∧ hj(Sj(q,v))| det ∇Sj(q,v)|

hk(Sk(q,v))| det ∇Sk(q,v)|
]

if j 
= k,

1 −∑p
l=0
l 
=k

αk,l(q, v) if j = k
(4.13)
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for (q, v) ∈ R
N × R

D, and where we recall that αk,j ∈ [0, 1], k, j = 0, . . . , p, are specified weights such
that

∑p
j=0 αk,j ≤ 1 for all k.

Let us now assume the particular setting described in Remark 3.7. Namely, take Y = R
pN , assume

for simplicity μ0 is the Lebesgue measure, so that dμ/dμ0(q) = π(q) for a.e. q ∈ R
N , and suppose

π(q) > 0 for a.e. q ∈ R
N . Also, assume V0 = . . . = Vp =: V , with V as given in (4.6), and let

Sj : R(p+1)N → R
(p+1)N , j = 0, . . . , p, be the flip involutions defined in (2.13). Then, under this setting,

(4.12) reduces to the same expression as in (4.11), cf. (3.17), whereas (4.13) reduces to

αk,j(q0, v) =
⎧⎨⎩αk,j

[
1 ∧ π(qj)

π(qk)

]
if j 
= k,

1 −∑p
l=0
l 
=k

αk,l(q0, v) if j = k
(4.14)

for (q0, v) = (q0, q1, . . . , qp) ∈ R
(p+1)N , cf. (3.18).

4.2 Multiproposal pCN algorithms

We next develop a multiproposal version of the pCN (Beskos et al., 2008; Cotter et al., 2013). As in the
previous subsection, we proceed by drawing on the conditionally independent formalism we developed
above in Section 2.3 to extend the standard pCN proposal mechanism.

Recall that the pCN algorithm is a methodology built to resolve infinite-dimensional measures which
are absolutely continuous with respect to a Gaussian base measure μ0. We therefore begin by briefly
reviewing this Gaussian formalism as suits our purposes here; see, e.g., (Bogachev, 1998; Da Prato &
Zabczyk, 2014) for a systematic treatment. Take X to be a real separable Hilbert space, with inner product
and norm denoted by 〈·, ·〉 and | · |, respectively. Consider any C̃ : X → X,, which is a trace-class,
symmetric and strictly positive definite linear operator.2 Let us recall that ν0 is a Gaussian measure on
X with mean m ∈ X and covariance operator C̃ , denoted ν0 = N(m, C̃ ), if ϕ∗μ0 is normally distributed
for any bounded linear functional ϕ : X → R and

ˆ
X
〈q̂, q〉μ0(dq̂) = 〈m, q〉,

ˆ
X
〈q̂ − m, q〉〈q̂ − m, q̃〉μ0(dq̂) = 〈C̃ q, q̃〉, for any q, q̃ ∈ X.

Note that, as one would expect extending the finite-dimensional case, the associated characteristic
function of ν0 is

ξ ∈ X �→
ˆ

X
exp(i〈ξ , q〉)ν0(dq) = exp

(
i〈ξ , m〉 − 1

2
〈C̃ ξ , ξ 〉

)
. (4.15)

A standard way to draw samples from such a ν0 is to use a Karhunen–Loève expansion as follows.
According to the Hilbert–Schmidt theorem, we can find a complete orthonormal system {ek}k≥0 of

eigenfunction of C̃ so that C̃ ek = μkek for any k ≥ 0. Drawing an i.i.d sequence {ξk}k≥1 of normal

2 In other words C̃ is bounded and linear such that 〈C̃q, q̃〉 = 〈C̃q̃, q〉, for any q̃, q ∈ X, 〈C̃q, q〉 > 0 whenever q ∈ X \ {0} and∑∞
k=1〈C̃ek , ek〉 < ∞ for any complete orthonormal system {ek}k≥0.
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26 Glatt-Holtz et al.

random variables in R with mean zero and variance one, we find that

w := m +
∞∑

k=1

√
μkekξk ∼ ν0. (4.16)

The pCN algorithm is used to sample from a target probability measure on X of the form

μ(dq) = 1

Z
e−Φ(q)μ0(dq), Z =

ˆ
X

e−Φ(q)μ0(dq). (4.17)

Here μ0 = N(0, C ) with C symmetric, positive and trace-class, and we suppose that Φ : X → R is
a potential function such that e−Φ(q) is μ0-integrable. The idea in Beskos et al. (2008); Cotter et al.
(2013) is to develop a proposal kernel to sample from μ by taking a Crank-Nicolson discretization of
the following Ornstein–Uhlenbeck dynamics

dq = −1

2
qdt + √

C dW, (4.18)

where W is a cylindrical Brownian motion on X so that, for any t > s ≥ 0,
√

C (W(t) − W(s)) =
N(0, (t − s)C ) (see e.g. Da Prato & Zabczyk, 2014). Here note that the preconditioned dynamics (4.18)
maintains μ0 as an invariant and indeed the choice of a Crank-Nicolson scheme for (4.18) is selected
precisely to preserve this invariance under numerical discretization. Concretely, this yields a proposal
kernel Q : X × B(X) → [0, 1] given by

Q(q0, dq̃0) = F(q0, ·)∗μ0(dq̃0) ∼ N(ρq0, (1 − ρ2)C ) (4.19)

where F : X × X → X is defined as

F(q, w) = ρq +
√

1 − ρ2w, (4.20)

for some tuning parameter ρ ∈ [0, 1]. Note that ρ is given in terms of the time step δ from the Crank-
Nicolson discretization of (4.18) as ρ = (4− δ)/(4+ δ). Note moreover that proposals can be generated
from (4.19), (4.20) by making use of an expansion of the form (4.16).

We derive our multiproposal version of the pCN algorithm based on Q in (4.19) to sample from μ

as in (4.17) as a direct corollary of Theorem 2.11. Fix the number of samples per step as p > 0 and take
Y = Xp, i.e. the p-fold product of X. After (2.12), we take V : X × B(Xp) → [0, 1] as

V (q0, dv) = V (q0, dq1, . . . , dqp) :=
ˆ

X

p∏
k=1

Q(q, dqk)Q(q0, dq), (4.21)

where v = (q1, . . . , qp) and with Q given by (4.19). We also consider involution mappings Sj : X×Xp →
X × Xp, j = 0, . . . , p, of the form (2.13), namely the Sjs are the coordinate flip operators: S0 := I;
Sj(q0, v) := Sj(q0, q1, . . . , qp) := (qj, q1, . . . , qj−1, q0, qj+1, . . . , qp), j = 1, . . . , p.
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Algorithm 5 (Multiproposal pCN (mpCN))

1: Select the algorithm parameters:

(i) ρ ∈ [0, 1].

(ii) the number of proposals p ≥ 1.

2: Choose q(0) ∈ X.
3: for k ≥ 0 do
4: Sample w(k+1) ∼ μ0 (cf. (4.16)).
5: Compute q := ρq(k) +√1 − ρ2w(k+1).
6: Sample w(k+1)

j ∼ μ0 independently for j = 1, . . . , p.

7: Compute q(k+1)
j = ρq +√1 − ρ2w(k+1)

j , j = 1, . . . , p. Set v(k+1) := (q(k+1)
1 , . . . , q(k+1)

p ).

8: Draw q(k+1) from the set (q(k), q(k+1)
1 , . . . , q(k+1)

p ) according to the probabilities
(α0(q

(k), v(k+1)), . . . , αp(q
(k), v(k+1))) as defined in (4.22).

9: k → k + 1.
10: end for

Regarding the assumptions in Theorem 2.11, notice from (4.17) that μ 
 μ0 and dμ/dμ0(q) =
e−Φ(q) > 0 for a.e. q ∈ X. Moreover, (2.15) reduces in our situation to showing that μ0 is in detailed
balance with respect to Q, which can easily be verified via e.g. equivalence of characteristic functionals.
Indeed, it follows from (4.15) that for any ξ , ξ̃ ∈ X

ˆ
X×X

exp(i(〈ξ , q〉 + 〈ξ̃ , q̃〉))Q(q, dq̃)μ0(dq) =
ˆ

X×X
exp(i(〈ξ , q〉 + 〈ξ̃ , ρq +

√
1 − ρ2q̃〉))μ0(dq̃)μ0(dq)

= exp

(
−1

2
(〈C ξ , ξ〉 + 2ρ〈C ξ , ξ̃〉 + 〈C ξ̃ , ξ̃〉)

)
.

An analogous calculation produces the same result for Q(q̃, dq)μ0(dq̃), allowing us to conclude
that indeed Q(q̃, dq)μ0(dq̃) = Q(q, dq̃)μ0(dq). According to Theorem 2.10, Theorem 2.11 and
Corollary 2.12, we may thus obtain a reversible sampling scheme by supplementing the above choices
of V and S = (S0, . . . , Sp) with acceptance probabilities given e.g. as in (2.17), written here as

αj(q0, v) = exp(−Φ(qj))

p∑
k=0

exp(−Φ(qk))

, (q0, v) = (q0, q1, . . . , qp) ∈ X × Xp, j = 0, . . . , p, (4.22)

with Φ as appears in (4.17). Alternatively, one could also consider αj as defined in (2.18), but here we
restrict our attention to the definition (4.22) in view of avoiding potentially poor behavior of the MH-type
αj in (2.18) for a large number p of proposals. See, however, Section 6 below.

Algorithm 5 summarizes the reversible sampling procedure that follows from Algorithm 2 with these
choices.

Under the framework of Section 3, we may also consider an extension of Algorithm 5 by allowing
for resampling among the cloud of proposals at each iteration, as in Algorithm 3. Specifically, we take
αk,j = αj as defined in (4.22) for all k, j = 0, . . . , p, together with Markov kernels V0 = . . . = Vp = V ,
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28 Glatt-Holtz et al.

Algorithm 6 (Multiproposal pCN with Proposal Resampling)

1: Select the algorithm parameters:

(i) ρ ∈ [0, 1].

(ii) the number of proposals p ≥ 1.

(iii) the number of resamples per proposal cloud n ≥ 1.

2: Choose q(0) ∈ X.
3: for k ≥ 0 do
4: Sample w(k+1) ∼ μ0 (cf. (4.16)).
5: Compute q := ρq(k) +√1 − ρ2w(k+1).
6: Sample w(k+1)

j ∼ μ0 independently for j = 1, . . . , p.

7: Compute q(k+1)
j = ρq +√1 − ρ2w(k+1)

j , j = 1, . . . , p. Set v(k+1) := (q(k+1)
1 , . . . , q(k+1)

p ).
8: for l = 1, . . . , n do
9: Draw r(nk+l) from the set (q(k), q(k+1)

1 , . . . , q(k+1)
p ) with the probabilities

(α0(q
(k), v(k+1)), . . . , αp(q

(k), v(k+1))) defined in (4.22).
10: l → l + 1.
11: end for
12: Set q(k+1) := r(n(k+1)).
13: k → k + 1.
14: end for

with V as in (4.21), and again the flip involutions Sj, j = 0, . . . , p, as in (2.13). In this case, it follows from
Remark 3.8 that (3.19) holds, so that we may write this particular case of Algorithm 3 as in Algorithm 6.
Notice that by setting the number of resamples as n = 1 the procedure indeed coincides with
Algorithm 5.

4.3 Multiproposal HMC algorithms

In this section, we present a few instances of Hamiltonian Monte Carlo (HMC)-like algorithms based on
multiple proposals, restricting our attention to the finite-dimensional case for simplicity. We emphasize
that the general scope of Algorithm 1 and Algorithm 3 allow for the possibility of a variety of other HMC-
like sampling schemes under different choices of algorithmic parameters and acceptance probabilities,
which we will explore in future work.

We proceed by briefly recalling some generalities regarding HMC algorithms, following a similar
presentation as in our recent contribution (Glatt–Holtz et al., 2023). For more complete details, we refer
to e.g. the pioneering works (Duane et al., 1987; Neal, 1993) and also to Bou-Rabee & Sanz-Serna
(2018); Hairer et al. (2006); Leimkuhler & Reich (2004); Neal (2011).

Let us consider spaces X = Y = R
N and fix a target measure of the form

μ(dq) = 1

Z
e−Φ(q)dq, Z =

ˆ
RN

e−Φ(q)dq, (4.23)

for some potential function Φ : R
N → R that we assume to be in C1(RN) and such that e−Φ(q) ∈

L1(RN). An HMC algorithm samples from this measure by first selecting a Hamiltonian function
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Parallel MCMC Algorithms 29

H : R2N → R such that the marginal of the associated Gibbs measure

M (dq, dv) = 1

ZH
e−H (q,v) dq dv, ZH =

ˆ
R2N

e−H (q,v) dq dv (4.24)

with respect to the ‘position’ variable q coincides with the target measure μ in (4.23). We may thus write
such Hamiltonian function in a general form as

H (q, v) = Φ(q) + Ψ (q, v), (q, v) ∈ R
2N ,

for some C1 function Ψ : R2N → R with
´
RN e−Ψ (q,v)dv = 1 for all q ∈ R

N . Under this definition, M
can be written as

M (dq, dv) = V (q, dv)μ(dq), for V (q, dv) = e−Ψ (q,v)dv, (4.25)

where it follows by construction that V is a Markov kernel.
In association with such H , one considers the following Hamiltonian dynamic for the pair y =

(q, v) ∈ R
2N

dy
dt

= J−1∇H (y), y(0) = (q0, v0), (4.26)

for some 2N × 2N real matrix J that is invertible and antisymmetric.3 This dynamic leaves H invariant
and preserves volume elements4 . As such, M is an invariant measure under the associated flow. This
in turn implies that the projected dynamic of the q-variable leaves invariant the q-marginal of M ,
namely μ.

Of course, it is typically intractable to exactly solve (4.26). One must instead resort to a suitable
numerical integrator maintaining certain indispensable geometric properties. For a chosen time step size
δ > 0, such a scheme {Ŝj,δ(q0, v0)}j∈N yields an approximation of the solution of (4.26) at times jδ,
j ∈ N.

For the given step size δ > 0, one builds {Ŝj,δ}j∈N starting from the single integration step Ξδ :

R
2N → R

2N , which is in general supposed to be an invertible C1 mapping. We require that Ξδ satisfies
the following standard geometric properties (see, e.g., Hairer et al., 2006; Leimkuhler & Reich, 2004):

(P1) Ξδ is volume-preserving, i.e.

| det ∇Ξδ(q, v)| = 1 for every (q, v) ∈ R
2N ; (4.27)

3 Typical choices for J and Ψ are given by J =
(

0 −I
I 0

)
and Ψ (q, v) = 1

2 〈M(q)−1v, v〉+ 1
2 ln((2π)N det(M(q))), where 〈·, ·〉

denotes the Euclidean inner product, for some ‘mass’ matrix M. In this case, Ψ (q, v) corresponds to the negative log-density of
the Gaussian N(0, M(q)) in R

N .
4 The solution map is actually symplectic, a stronger property that implies the preservation of volumes. See (Glatt–Holtz et al.,

2023,), Definition 4.1) in our context.
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30 Glatt-Holtz et al.

(P2) Ξδ is reversible with respect to the ‘momentum’-flip involution

R(q, v) := (q, −v), (4.28)

i.e.

R ◦ Ξδ(q, v) = Ξ−1
δ ◦ R(q, v) for all (q, v) ∈ R

2N . (4.29)

Or, equivalently, (R ◦ Ξδ)
2 = I, i.e. R ◦ Ŝ is an involution.

We now define

Ŝj,δ = Ξ
j
δ for j ∈ Z, (4.30)

where Ξ
j
δ denotes the j-fold composition of Ξδ for j ≥ 1, the identity map for j = 0 and the j-fold

composition of Ξ−1
δ for j ≤ −1. Note that it follows immediately that for j ∈ N, Ŝj,δ maintains the same

volume preservation and reversibility properties à la (4.27), (4.29).
As a concrete example, we recall that when the Hamiltonian is written in the separable form

H (q, v) = Φ(q) + Ψ (v) and J =
(

0 −I
I 0

)
, the associated Hamiltonian dynamic is dq/dt = ∇Ψ (v),

dv/dt = −∇Φ(q). In this case, the classical leapfrog integrator is defined as

Ξδ := Ξ
(1)
δ/2 ◦ Ξ

(2)
δ ◦ Ξ

(1)
δ/2, (4.31)

where Ξ(1) and Ξ(2) are the exact solution operators of dq/dt = 0, dv/dt = −∇Φ(q), and dq/dt =
∇Ψ (v), dv/dt = 0, respectively. Namely,

Ξ
(1)
t (q, v) = (q, v + t∇Φ(q)) and Ξ

(2)
t (q, v) = (q + t∇Ψ (v), v) (4.32)

for all t ∈ R. This classical leapfrog scheme is the basis for many of the common HMC implementations.
Fixing now δ > 0, p ≥ 1 and an integration scheme defined by Ξδ maintaining (P1),(P2), we now

construct a multiproposal sampling procedure starting from the setting of Section 2.1, Algorithm 1. Our
approach makes use of a sequence of integration steps as the multiple proposals at each iteration. For
this, we define the mappings, cf. (4.28), (4.30),

S0 := I, Sj := R ◦ Ŝj,δ , for j = 1, . . . , p. (4.33)

Each of these maps are involutions according to property (P2) above. Property (P1) furthermore implies
that each of these maps Sj are volume preserving so that, cf. (4.3),

dS∗
j M

dM
(q, v) = exp(H (q, v) − H (Sj(q, v))). (4.34)
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Algorithm 7 (Multiproposal HMC (mHMC))

1: Select the algorithm parameters:

(i) The ‘momentum’ kernel V (q, dv) = e−Ψ (q,v)dv.

(ii) The time step size δ > 0 and the corresponding integration step Ξδ : R2N → R
2N satisfying

(P1), (P2) used for approximating the Hamiltonian dynamic (4.26) (see (4.31), (4.32)).

(iii) The number of integration steps p ≥ 1.

(iv) The acceptance weights αj ∈ [0, 1] such that
∑p

j=1 αj ≤ 1.

2: Choose q(0) ∈ R
N .

3: for k ≥ 0 do
4: Sample v(k+1) ∼ V (q(k), ·).
5: Set (q̄(k,0), v̄(k,0)) := (q(k), v(k+1)).
6: for j = 0, . . . , p − 1 do
7: Compute (q̄(k,j+1), v̄(k,j+1)) := Ξδ(q̄

(k,j), v̄(k,j)).
8: j → j + 1.
9: end for

10: Set q(k+1) by drawing from (q(k), q̄(k,1), . . . , q̄(k,p)) according to the probabilities (α
(k)
0 . . . , α(k)

p )
where

α
(k)
j := αj

[
1 ∧ exp(H (q̄(k,0), v̄(k,0)) − H (q̄(k,j), −v̄(k,j)))

]
for j = 1, . . . , p, and α

(k)
0 := 1 −

p∑
j=1

α
(k)
j .

11: k → k + 1.
12: end for

Therefore, it follows from Corollary 2.6 that we may obtain a reversible sampling algorithm by
supplementing V from (4.25) and these mappings Sj with the following acceptance probabilities

αj(q, v) = αj

[
1 ∧ eH (q,v)−H (Sj(q,v))

]
, j = 1, . . . , p; α0(q, v) = 1 −

p∑
j=1

αj(q, v), (4.35)

for all (q, v) ∈ R
2N , where αj are given weights such that

∑p
j=1 αj ≤ 1. Algorithm 7 summarizes the

resulting reversible procedure that follows as a particular case of Algorithm 1 with these choices.

Remark 4.2 Note that one could also consider in Algorithm 7 acceptance probabilities αj, j = 0, . . . , p,
in the corresponding Barker form (2.8). However, to guarantee reversibility or even just ergodicity in
this case according to Corollary 2.4, the summation condition (2.7) would be imposed, thus introducing
a seemingly restrictive assumption on the numerical integrator.

Furthermore, under the framework of Section 3, we can also construct a multiproposal HMC
algorithm that allows for proposal resampling. In this case, we choose in Algorithm 3 Markov kernels
V0 = · · · = Vp =: V , with V as in (4.25), and again consider the involution mappings Sj from the
integration of (4.26) given in (4.33). From Corollary 3.5, we may supplement these choices with e.g.
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32 Glatt-Holtz et al.

either of the following definitions of acceptance probabilities to yield an unbiased sampling algorithm,
cf. (4.12)–(4.13):

αk,j(q, v) = e−H (Sj(q,v))∑p
l=0 e−H (Sl(q,v))

, (4.36)

or

αk,j(q, v) =
⎧⎨⎩αk,j

[
1 ∧ eH (Sk(q,v))−H (Sj(q,v))

]
if j 
= k,

1 −∑p
l=0
l 
=k

αk,l(q, v) if j = k
(4.37)

for all k, j = 0, . . . , p and (q, v) ∈ R
2N , where in (4.37) αk,j ∈ [0, 1], k, j = 0, . . . , p, are chosen weights

satisfying
∑p

j=0 αk,j ≤ 1 for all k.
In fact, due to step 7 in Algorithm 3, at each iteration the procedure requires the calculation of

αk,j(Sm(q, v)) = αk,j(R ◦ Ŝm,δ(q, v)) for some (q, v) ∈ R
2N and some m ∈ N. Note that, according

to (P2) above, we have

Sj ◦ Sm = R ◦ Ŝj,δ ◦ R ◦ Ŝm,δ = Ŝ−1
j,δ ◦ Ŝm,δ = (Ξ

j
δ)

−1 ◦ Ξm
δ = (Ξ−1

δ )j ◦ Ξm
δ = Ξ

m−j
δ ,

for all m, j = 0, . . . , p, where recall that we denote Ξ−l
δ := (Ξ−1

δ )l for all l ∈ N. Therefore, it follows
respectively under (4.36) and (4.37) that

αk,j(Sm(q, v)) = αk,j(R ◦ Ŝm,δ(q, v)) = exp(−H (Ξ
m−j
δ (q, v)))∑p

l=0 exp(−H (Ξm−l
δ (q, v)))

, (4.38)

or

αk,j(Sm(q, v)) = αk,j(R ◦ Ŝm,δ(q, v)) =
⎧⎨⎩αk,j

[
1 ∧ eH (Ξm−k

δ (q,v))−H (Ξ
m−j
δ (q,v))

]
if j 
= k,

1 −∑p
l=0
l 
=k

αk,l(q, v) if j = k
(4.39)

for all k, j, m = 0, . . . , p and (q, v) ∈ R
2N . Algorithm 8 details the sampling procedure resulting from

these observations.

Remark 4.3 In contrast to the situation for the multiproposal pCN algorithms in Section 4.2, cf.
Remark 3.8, it is clear by comparing the previous two algorithms that Algorithm 8 with n = 1 and
under the choice of αk,j in (4.39) yields a different procedure than Algorithm 7.

4.4 Simplicial samplers

In this section, we cast into the framework of Section 2 and Section 3 a class of algorithms recently
introduced in Holbrook (2023a) (see also Tjelmeland (2004)), where proposals are generated as the
vertices of a fixed regular simplex after a random rescaling of edge lengths, random rotation and
translation by the current state. We make the algorithmic setting more precise as follows.
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Parallel MCMC Algorithms 33

Algorithm 8 (Multiproposal HMC with Proposal Resampling)

1: Select the algorithmic parameters

(i) The “momentum” kernel V (q, dv) = e−Ψ (q,v)dv.

(ii) The time step size δ > 0 and the corresponding integration step Ξδ : R2N → R
2N satisfying

(P1), (P2) used in the scheme Ŝk,δ = Ξ k
δ approximating the Hamiltonian dynamic (4.26) (see

(4.31), (4.32)).

(iii) The number of integration steps p ≥ 1.

(iv) If using the mechanism (4.39), specify the weights αj ∈ [0, 1], j = 1, . . . , p, such that∑p
j=1 αj ≤ 1.

(v) The n ≥ 1 number of samples drawn per generated proposal cloud.

2: Choose an initial (q(0), v(0)) ∈ R
2N and k(0) ∈ {0, . . . , p}.

3: Set r(0) := Π1Ŝk(0),δ(q
(0), v(0)).

4: for i ≥ 0 do
5: Set q(i+1) := r(ni).
6: Sample v(i+1) ∼ Vk(i) (q(i+1), dv).

7: Set (q̄(k(i),k(i)), v̄(k(i),k(i))) := (q(i+1), v(i+1)).
8: for j = 0, . . . , k(i) − 1 do

9: Compute (q̄(k(i),k(i)−j−1)), v̄(k(i),k(i)−j−1))) := Ξδ(q̄(k(i),k(i)−j), v̄(k(i),k(i)−j)).
10: j → j + 1.
11: end for
12: for j = k(i), . . . , p − 1 do

13: Compute (q̄(k(i),j+1)), v̄(k(i),j+1))) := Ξ−1
δ (q̄(k(i),j), v̄(k(i),j)).

14: j → j + 1.
15: end for
16: Set kcur := k(i).
17: for m = 1, . . . , n do
18: Draw knxt ∈ {0, . . . , p} with the probabilities (αi

kcur ,0, . . . , αi
kcur ,p) where

αi
kcur ,j := exp(−H (q̄(k(i),j), v̄(k(i),j)))∑p

l=0 exp(−H (q̄(k(i),l), v̄(k(i),l))))
, j = 0, . . . , p,

or

αi
kcur ,j =

⎧⎪⎨⎪⎩
αkcur ,j

[
1 ∧ exp

(
H (q̄(k(i),kcur), v̄(k(i),kcur)) − H (q̄(k(i),j), v̄(k(i),j))

)]
if j 
= kcur,

1 −∑p
l=0

l 
=kcur

αkcur ,l(q, v) if j = kcur.

19: Set kcur := knxt.

20: Set r(ni+m) := q̄(k(i),kcur).
21: m → m + 1.
22: end for
23: Set k(i+1) = kcur .
24: i → i + 1.
25: end for
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34 Glatt-Holtz et al.

Fix N ≥ 1 and a continuously distributed target measure μ ∈ Pr(RN), namely μ(dq) = π(q)dq for
some density function π : RN → R

+. Fix also p ≤ N and a p-simplex in R
N with equidistant vertices

w1, . . . , wp, 0 ∈ R
N , where we set 0 as one of the vertices for convenience. Specifically, w1, . . . , wp

are linearly independent vectors that we assume for simplicity to have unit norm and pairwise distance,
namely

‖wj‖ = 1 forj = 1, . . . , p; and‖wj − wk‖ = 1, for all j, k = 1, . . . , p, j 
= k. (4.40)

The corresponding p-simplex is defined as the convex hull of w1, . . . , wp, 0, so that for, e.g., p = 1, 2, 3
it is given respectively by a line, a triangle, and a tetrahedron.

To perform random rotations and rescalings of this fixed simplex, we set the following additional
framework. Denote by ON the N-dimensional orthogonal group, i.e., the group formed by all real N × N

orthogonal matrices Q, namely QQT = I. We endow ON with the Borel σ -algebra ofRN×N � R
N2

. Since
ON is a locally compact topological group, it admits a unique normalized left Haar measure HN on ON
(Folland, 1999; Halmos, 2013; Stewart, 1980). Here by normalized we mean precisely HN(ON) = 1,
and we recall that a left Haar measure is defined as a nonzero left-invariant Radon measure, where the
left-invariance property means that

HN(Q(E)) = HN(E) for all Q ∈ ON and Borel set E ⊂ ON , (4.41)

or, equivalently, (QT)∗HN = HN for every Q ∈ ON .
Let us additionally fix a probability distribution of edge lengths λ>0 given by a measure ν(dλ) inR+.

We define a mapping F : RN × R
+ × ON → R

Np that for each (q, λ, Q) ∈ R
N × R

+ × ON yields a
rescaling of the vertices w1, . . . , wp by λ, applies the orthogonal transformation Q, and then shifts the

output vertices λQw1, . . . , λQwp ∈ R
N by q. Namely,

F(q, λ, Q) = v := (q + λQw1, . . . , q + λQwp) for all (q, λ, Q) ∈ R
N × R

+ × ON .

From a current state q ∈ R
N , one then draws independently λ ∼ ν, Q ∼ HN , and proposes p new

states given by F(q, λ, Q). This proposal procedure can be written explicitly in terms of the following
Markov kernel

V (q, dv) = F(q, ·)∗(ν ⊗ HN)(dv) for q ∈ R
N , v ∈ R

Np. (4.42)

Next, similarly as in (2.13), we define involution mappings Sj : RN(p+1) → R
N(p+1), j = 0, . . . , p,

given as the coordinate flip operators

S0 := I; Sj(q0, v) := Sj(q0, q1, . . . , qp) := (qj, q1, . . . , qj−1, q0, qj+1, . . . , qp) (4.43)

for all (q0, v) ∈ R
N(p+1) and j = 1, . . . , p.

To complete the parameter setup from Algorithm 1, we consider acceptance probabilities αj,
j = 0, . . . , p, given as either the Barker type (2.8) or the MH type (2.10)–(2.11). Before providing
the explicit interpretation of these formulas within this special setting, we justify these choices of αj
by noticing that condition (2.7) in Corollary 2.4 and also the absolute continuity condition S∗

j M 
 M
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Parallel MCMC Algorithms 35

from Corollary 2.6 are indeed satisfied. These statements follow from the next two propositions, whose
proofs are presented in Appendix B.7 and Appendix B.8, respectively.

Proposition 4.4 Fix any μ ∈ Pr(RN). Let V be the Markov kernel in (4.42), and define the measure
M (dq, dv) = V (q, dv)μ(dq) in R

N(p+1). Let also Sj : RN(p+1) → R
N(p+1), j = 0, . . . , p, be the flip

involution mappings defined in (4.43). Then, we have the following equivalence of measures:

p∑
k=0

(Sj ◦ Sk)
∗M =

p∑
k=0

S∗
kM (4.44)

for all j = 0, . . . , p.

Proposition 4.5 Let μ ∈ Pr(RN) be given as μ(dq) = π(q)dq for some density function π : RN →
R

+. Set V to be the Markov kernel in (4.42), and define the measure M (dq, dv) = V (q, dv)π(q)dq
in R

N(p+1). Let also Sj : RN(p+1) → R
N(p+1), j = 0, . . . , p, be the flip involution mappings defined in

(4.43). Then, S∗
j M 
 M for all j = 0, . . . , p, and

dS∗
j M

dM
(q0, v) = π(qj)

π(q0)
for M -a.e.(q0, v) = (q0, q1, . . . , qp) ∈ R

N × R
pN . (4.45)

It thus follows from Corollary 2.4 and Corollary 2.6 that we can obtain a reversible sampling
algorithm by combining the above choices of V and Sj, j = 0, . . . , p, in (4.42)–(4.43) with acceptance
probabilities αj, j = 0, . . . , p, given either by (2.9) or (2.10)–(2.11), which according to (4.45) are written
here respectively as

αj(q0, v) = π(qj)∑p
l=0 π(ql)

, j = 0, . . . , p, (4.46)

and

αj(q0, v) = αj

[
1 ∧ π(qj)

π(q0)

]
, j = 1, . . . , p; α0(q, v) = 1 −

p∑
j=1

αj(q0, v), (4.47)

for all (q0, v) = (q0, q1, . . . , qp) ∈ R
N(p+1) such that the expression in the denominator in each case

is strictly positive, and zero otherwise. As before, αj ∈ [0, 1], j = 1, . . . , p, in (4.47) are user specified
weights such that

∑p
j=1 αj ≤ 1. Under this setting, Algorithm 9 describes the reversible procedure for

sampling from μ(dq) = π(q)dq in R
N as a special case of Algorithm 1.

Furthermore, we can also obtain a simplicial sampler algorithm allowing for multiple selected states
from the cloud of proposals at each iteration as in Algorithm 3. For this, we set V0 = . . . = Vp :=
V , with V as in (4.42), and (S0, . . . , Sp) as in (4.43), along with acceptance probabilities αk,j, k, j =
0, . . . , p, that can be defined for example as in (3.15) or (3.16). Note that, similarly as in (4.46) and
(4.47), these formulas can be written explicitly in terms of the density π from the target μ by invoking
(4.45). Moreover, it follows from the same arguments as in Remark 3.8 that by setting the number of
jumps n = 1 in the resulting algorithm would reduce it to Algorithm 9. We omit further details.
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36 Glatt-Holtz et al.

Algorithm 9

1: Select the algorithm parameters:

(i) Linearly independent vectors w1, . . . , wp ∈ R
N , for some p ≤ N, satisfying (4.40) to form a

p-simplex with vertices (w1, . . . , wp, 0).

(ii) The edge length distribution ν(dλ).

(iii) If using the mechanism (4.47), select the weights αj ∈ [0, 1] for j = 1, . . . , p such that∑p
j=1 αj ≤ 1.

2: Choose q(0)
0 ∈ X.

3: for k ≥ 0 do
4: Sample λ(k+1) ∼ ν.
5: Sample Q ∼ HN .

6: Compute q(k+1)
j = q(k)

0 + λQwj for j = 1, . . . , p. Set v(k+1) := (q(k+1)
1 , . . . , q(k+1)

p ).

7: Set q(k+1)
0 by drawing from (q(k)

0 , q(k+1)
1 , . . . , q(k+1)

p ) according to the probabilities

(α0(q
(k)
0 , v(k+1)), . . . , αp(q

(k)
0 , v(k+1))) as defined in (4.46) or (4.47).

8: k → k + 1.
9: end for

5. Numerical case studies

This section collects various case studies that illustrate some of the potential scope of the pMCMC
algorithms we derive above in Section 4. Section 5.1 considers on two case studies for Algorithm 4
focusing on the case when p, the number of proposals per step, is taken to be very large. These examples
illustrate the promise of pMCMC methods in the context of modern computational architectures while
illuminating its efficacy in addressing highly multimodal problems. In Section 5.2 we present a series
of examples in the framework of Bayesian statistical inverse problems. In order to provide some
preliminary studies of Algorithm 5 we focus on the case of Gaussian priors for our unknown parameter
so that we are resolving target measures of the form (4.17). Here two of our examples confront PDE
constrained problems. These problems are naturally high (infinite) dimensional featuring complex
correlation geometry and multimodal structure and where, particularly in our second example, gradient
based methods may be impractical or costly to employ.

5.1 High-performance computing

The general structure of parallel MCMC algorithms leverages parallel computing resources that are
becoming increasingly available and easy to use. Whereas Holbrook (2023b) considers implementa-
tion of parallel MCMC algorithms using quantum computers, here we consider parallelization using
conventional parallel computing resources. We first compare the efficiency of sequential and massively
parallel implementations of Algorithm 4 using an Intel Xeon CPU with 8 cores and 26GB RAM and
an Nvidia Tesla P100 GPU with 3,584 cores, 16GB RAM and 730 GB/s memory bandwidth. Since
Algorithm 4 enables simplified acceptance probabilities (Holbrook, 2023a), its two main computational
bottlenecks are the generation of p proposals qj and the calculation of p target values π(qj). Within
the TensorFlow (Abadi et al., 2016) framework, the random module accelerates the former task with
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Parallel MCMC Algorithms 37

Fig. 1. Parallelization study displaying means and 95% confidence intervals. Left: we use a graphics processing unit (GPU) to
accelerate embarrassingly parallel proposal and/or target evaluation steps for Algorithm 4 and compare to conventional central
processing unit (CPU) implementation. Here, we fix proposal count to 100,000. Right: we demonstrate how parallelization across
many target components can allow for more proposals when working with a fixed timing budget. Here, GPU uses 100,000 proposals
while CPU uses 100. Crucially, both take roughly the same amount of time per iteration.

GPU powered implementations of the parallel PRNG algorithms of Salmon et al. (2011). For the latter
task, the Distributions library (Dillon et al., 2017) enables GPU powered implementations of popular
probability density functions that parallelize across evaluation arguments and density components when
appropriate. All experiments use the isotropic Gaussian proposal kernel Q(q, dq̃) with variance tuned to
obtain a 50% acceptance rate.

Figure 1 shows results from two parallelization experiments that demonstrate the speedups asso-
ciated with such GPU implementations compared to sequential implementations on a CPU. In the
first experiment, we record the number of seconds required for 100 iterations of Algorithm 4 using
100,000 proposals with parallelized proposal and/or acceptance steps for centered/isotropic multivariate
Gaussian targets of 100, 500 and 1000 dimensions. In general, higher-dimensional targets require more
computations, but the burden of dimensionality is significantly greater for CPU implementations. We
find that both proposal and acceptance steps benefit from parallelization but that parallelizing proposals
is more beneficial at these scales. In the second experiment, we maintain a fixed time budget for parallel
MCMC implementations that use CPU (with 100 proposals) or GPU (with 100,000 proposals) for both
proposal and acceptance steps. The target distributions are 2-dimensional mixtures of 10, 50, 100, 500
and 1000 standard Gaussians centered at 0, 10, 20, etc. (Figure C13). We monitor effective sample sizes
after 10,000 MCMC iterations. In this context, the target evaluations scale linearly in the number of
mixture components, but the Distributions library enables parallelization across proposals and mixture
components. The upshot is a thousand-fold increase in the number of proposals when operating under a
fixed time budget, and this increase in proposals leads to significantly better exploration of the heavily
multimodal targets.

Next, we compare the same parallel MCMC algorithm to the massively parallel implementation of
independent random walk Metropolis Markov chains to see if the latter, embarrassingly parallel approach
is sufficient. Importantly, we implement both strategies within TensorFlow using the same GPU. An
immediate difference between the two approaches is that the memory burden for independent chains
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38 Glatt-Holtz et al.

quickly accrues. For example, collecting S states each from C chains with D dimensional targets requires
O(SCD) memory. In high-dimensional settings with thousands of chains, we therefore find it necessary
to severely thin the chains, saving a relatively small number of states. Figure 2 shows results from just
such a comparison, targeting centered, isotropic and high-dimensional Gaussians. We run 10,000 parallel
chains but find it necessary to remove 99 states for every 100. An adverse dependence of Monte Carlo
estimator accuracy on initial positions demonstrates that the act of combining such a large number of
chains fails to make up for the weaknesses of individual chains despite their being tuned for optimal
scaling (Gelman et al., 1997). On the other hand, the parallel MCMC algorithm achieves accuracy when
run for the same number of iterations. Figure 3 shows similar results using the 2-dimensional mixture of
many Gaussians targets from the previous experiment (Figure 1). Thanks to the low-dimensional nature
of the problem, we are able to save all 10,000 states of 10,000 parallel chains, but this approach fails
nonetheless. A harbinger of this failure is that the parallel chains achieve a potential scale reduction
factor of 2.30 (Gelman & Rubin, 1992). Again, the parallel MCMC algorithm performs well for the
same number of MCMC iterations and, free from memory constraints, is able to use as many as 100,000
proposals within each iteration.

5.2 Statistical inversion with infinite-dimensional unknowns

We next present three case studies involving target measures arising from ill-posed inverse problems
framed in the setting of Bayesian statistical inversion, Dashti & Stuart (2017); Kaipio & Somersalo
(2006); Stuart (2010). Here we are particularly focused on PDE constrained problems with infinite-
dimensional unknowns with a particular emphasis on fluid measurement problems in two different
settings we advocated recently in Borggaard et al. (2020); Borggaard et al. As noted above, while such
problems must be truncated to fit on a computer, study in the full infinite-dimensional setting has yielded
MCMC algorithms with beneficial convergence results in the high-dimensional limit (Beskos et al., 2008,
2011; Cotter et al., 2013; Hairer et al., 2014).

Before delving into the specific details of each of the three problems let us first recall some
generalities of the statistical inversion framework. Suppose we are trying to recover an unknown
parameter q sitting in a parameter space X, typically a separable Hilbert space. Our parameter is observed
through a forward model G : X → R

k and is subjected to an additive observational noise η. Namely, we
would like to estimate q ∈ X from the observation model

Y = G (q) + η. (5.1)

By placing a prior probability μ0 on X for our unknown q and assuming that η is continuously distributed
with density pη, Bayes theorem (see (Dashti & Stuart, 2017, Borggaard et al., 2020)) uniquely determines
the posterior probability measure for q given observed data Y as

μ(dq) := 1

Z
pη(Y − G (q))μ0(dq), where Z =

ˆ
X

pη(Y − G (q̃))μ0(dq̃). (5.2)

We view this posterior μ as an optimal solution of the ill-posed inverse problem (5.1).
As noted above, we are interested in estimating unknown parameters appearing in a partial differential

equation. Typically we consider the situation where

G = O ◦ Ŝ, where Ŝ is a ‘PDE parameter to solution map’ and O is an ‘observation operator’. (5.3)
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Parallel MCMC Algorithms 39

Fig. 2. Means and 95% confidence intervals for mean absolute estimation error from 10k parallel MH chains versus a single parallel
MCMC chain produced by Algorithm 4 using 100k proposals. Both target isotropic Gaussians of 100, 500 and 1000 dimensions
using 10k MCMC iterations. Estimator from 10k parallel chains demonstrates adverse dependence on starting point: starting at
distribution mean 0 harms second moment estimator, but starting at 1 harms first moment estimator. The difference between chain
and proposal counts arises from memory constraints on the multi-chain approach and does not appreciably change results.

Fig. 3. Means and 95% empirical intervals for mean absolute estimation error from 10k parallel MH chains versus a single parallel
MCMC chain produced by Algorithm 4 using 10k proposals. Both algorithms target mixtures of isotropic Gaussians using 10k
MCMC iterations. To facilitate comparison between errors associated with the estimation of first and second moments, we divide
mean absolute errors by true moment values.
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40 Glatt-Holtz et al.

This second operator O projects the PDE solution down to a finite-dimensional space. Notice that in the
natural case of a Gaussian prior μ0 and e.g. Gaussian observational errors ηj, (5.2) takes the form (1.6),
which falls in the scope of Algorithm 5.

5.2.1 A finite-dimensional toy model. Our first statistical inverse problem has a finite-dimensional
unknown parameter space, but was designed as a toy model for much more complex and computationally
involved PDE inverse problems we consider below in Section 5.2.2 and Section 5.2.3. Our goal here
is to have a ‘table-top’ statistical experiment that mimics some of the structure (and indeed produces
statistics reminiscent of) these more involved problems but which can be fully resolved on a laptop in a
matter of hours.

Problem specification.
We let X, our unknown parameter space, be the collection of skew symmetric matrices acting on R

d

so that m := dim(X) = d(d − 1)/2. We then take Ŝ = Ŝg,κ : Rm → R
d to be the solution of

(Aq + κI)x = g, (5.4)

namely x(Aq) = Ŝ(q) := (Aq + κI)−1g. Here κ > 0 and g = (g1, . . . , gd) ∈ R
d are fixed and known

parameters in our model. Regarding the observation procedure O : R
d → R

k we consider resolving
some of the components of Ŝ(q) = (Ŝ(q)1, . . . , Ŝ(q)d), namely

O(Ŝ(q)) = (〈Ŝ(q), z1〉, . . . , 〈Ŝ(q), zk〉)
for some directions z1, . . . , zk ∈ R

d. O could be taken to be nonlinear in general, for example in the case
of the norm O(Ŝ(Aq)) = ‖Ŝ(Aq)‖. Note that (5.4) explicitly mimics some of the structure of a steady
state version of the advection-diffusion problem, (5.8), we consider further on below.

Turning now to the specifics of the numerical study carried out here we let d = 4 so that the dimension
of the unknown parameter space is dim(X) = 6. Regarding the observational noise we assume η ∼
N(0, σ 2

η Ik). We observe the first two components of Ŝ(Aq) (i.e k = 2) so that our target measure from
(5.2) takes the form

μ(dq) = e−Φ(q)

Z
μ0(q), where Φ(q) := 1

2σ 2
η

(
(y1 − Ŝ(q)1)

2 + (y2 − Ŝ(q)2)
2
)

(5.5)

where the prior μ0 is a centered Gaussian with a diagonal covariance specified by two parameters σ ∈ R

and γ > 0 as

μ0 = N(0, diag(σ 2, σ 22−γ , σ 23−γ , σ 24−γ , σ 25−γ , σ 26−γ )).

Regarding the choice of parameters defining (5.5) we selected

σ 2
η = 2, y1 = 4.601, y2 = 18.021, σ 2 = 5, γ = 1.5, (5.6)

and to specify Ŝ from (5.4) we considered

κ = .1, g = (0, 0, 5, 2). (5.7)

Note that, regarding the selection of y1 and y2, we found a value of Ā through a Monte Carlo search
such that x(−Ā)1 ≈ x(Ā)1 = y1 and x(−Ā)2 ≈ x(Ā)2 = y2 up to an error of approximately .09.
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Parallel MCMC Algorithms 41

Fig. 4. Histogram of the one and two dimensional marginals of μ defined by (5.5) relative to the parameters (5.6) and (5.7).
While relatively low-dimensional, this target measure provides an interesting test case exhibiting both ill-conditioned geometry
and multimodality. In fact, two different flavors of multimodality are exhibited: the dimensions 2-3 marginal exhibits energetic
multimodality while the dimensions 1-3 marginal exhibits entropic multimodality.

However, from a preliminary, non-systematic, exploration of the parameter space, we experimentally
found covariance structures that were broadly similar topologically with regard to the covariance
structures appearing in the resulting target measures across a variety of different parameter values in
comparison to those chosen above.

Numerical results.
As a benchmark we fully resolved (5.5) using a traditional pCN sampler with 108 samples taking the

algorithmic parameter ρ = .99 that yielded an approximate acceptance ratio of .22. As a sanity check
we also ran mpCN out to 107 samples under the algorithmic parameter ρ = .6, p = 100. These two
benchmark runs produced very similar statistics. A histogram representing the one and two dimensional
marginals of the fully resolved target are pictured in Figure 4.
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42 Glatt-Holtz et al.

Fig. 5. Two different illustrations of improving per-sample performance for mpCN (Algorithm 5) for the observable Ψ (q) = ‖q‖2.
The left panel provides autocorrelation plots while the right panel measures the convergence of ergodic averages.

Fig. 6. Time series plots comparing mpCN (Algorithm 5) with p = 100 and pCN for various values of ρ for the observable
Ψ (q) = ‖q‖2.

To provide an assessment of the efficacy of mpCN (Algorithm 5) for this model (5.5) we ran mpCN
out to 105 samples over a range of algorithmic parameter values ρ ∈ [0, 1] and p ≥ 1 namely:

ρ ∈ {.3, .4, .5, .6, .7, .8, .9, .95, .99} p ∈ {10, 25, 50, 100}.
Unsurprisingly performance improved on a per sample basis for fixed ρ as p increases as illustrated in
Figure 5.

An unambiguous heuristic for the selection of an optimal choice for ρ for a given value of p remains
unclear. What is evident from our numerical experiments is that, firstly, ρ should be chosen to be rather
more aggressive in comparison to its single proposal pCN counterpart. Secondly, it appears that effective
chains are produced over a fairly robust range of values for ρ. These observations are illustrated in
Figure 6 and Figure 7. For further illustrations of these points, see Figure C14, Figure C15 and Figure C16
in Appendix C below.

5.2.2 Estimation of velocity fields from a passive solute. Our second model problem, developed
previously in Borggaard et al. (2020), involves the estimation of a time independent, divergence free
vector field q from the sparse measurement of a solute passively advected and diffusing in the fluid
medium. By choosing observations that leverage symmetries in the problem, we generate a posterior
measure with complex correlation and multimodal structures that make efficient sampling difficult.
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Fig. 7. Convergence plots comparing mpCN (Algorithm 5) with p = 100 and pCN for various values of ρ over different
observables.

Problem specification.
The basic physical model for this situation is the advection-diffusion equation

∂tθ + q · ∇θ = κΔθ , (5.8)

where θ represents the concentration of the solute. We consider (5.8) in the case of a periodic two
dimensional domain T

2 = [0, 1]2 with a known initial condition θ(0, x) = θ0(x) (i.e. initial solute
concentration) and diffusivity parameter κ > 0.

To develop concrete examples in this setting we need to specify the prior for the velocity field q,
the solute observation procedure O in (5.3) and the observation noise structure η in (5.1). We consider
the unknown parameter space as the Sobolev space of divergence free, mean free vector fields (see, e.g.,
Temam, 1995) defined as

Hs
div :=

⎧⎨⎩q : T2 → R
2 : q(x) :=

∑
k∈Z2

qk
k⊥

‖k‖2
e2π ik·x, q̄k = −q−k, ‖q‖Hs < ∞

⎫⎬⎭ , (5.9)

where qk are complex numbers with q̄k representing the complex conjugate and

‖q‖2
Hs :=

∑
k∈Z2

‖k‖2s|qk|2. (5.10)

The Sobolev spaces Hs of mean free scalar fields are defined analogously. When s > 1 we have that
Ŝ(q, θ0) = θ(q, θ0), the solution of (5.8) corresponding to any q ∈ Hs

div and θ0 ∈ Hs, is an element in
C([0, T], Hs) i.e. the continuous functions from [0, T] taking values in Hs. Note that this solution map
Ŝ depends continuously on q, θ0 in the standard topologies; see Borggaard (2020) for a proof of these
well-posedness claims.

Regarding the prior μ0, we consider a centered Gaussian with covariance operator defined as (see
Section 4.2 above):

C q =
∑
k∈Z2

Ek

(ˆ
T2

ek(x) · q(x)dx
)

ek where Ek = E(‖k‖)
2π‖k‖ . (5.11)

Here ek(x) := k⊥
‖k‖ exp(2π ik · x) and

E(k) = E0

N∑
j=0

(
k

2j/2

)4

exp

(
− 3k2

2i+1

)
2−jξ/2. (5.12)
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44 Glatt-Holtz et al.

The form of E in (5.12) determines the ‘energy spectrum’ we are placing on the prior for the unknown
velocity field q and was inspired by a turbulence model due to Kraichnan; see Kraichnan (1968, 1991).
The model is specified by the three parameters, E0, ξ , N where E0 is related to the overall energy of
turbulent flow, N determines the range of scales k ∈ [0, 2N] in an ‘inertial range’ where ξ is the exponent
in a power law decay over this range. In our example we specify

E0 = 1, N = 20, ξ = 3/2. (5.13)

To make the sampling computationally tractable, we truncate the unknown (5.10) to 0 < ‖k‖ ≤ 8,
yielding a 196-dimensional sample space. See Figure C17 below in Appendix C for a visualization of a
typical draw from this prior.

Regarding the observational data specifying our posterior measure we exploit symmetries in the
parameter to solution maps specified by (5.8) to obtain a posterior with a complex, highly non-Gaussian
structure; see Figure C18 below and Borggaard et al. (2020) for further details. We consider

θ0(x, y) = 1

2
− 1

4
cos(2πx) − 1

4
cos(2πy), q∗(x, y) = [8 cos(2πy), 8 cos(2πx)],

and notice that

θ(t, xi, q∗, θ0) = θ(t, xi, −q∗, θ0) for any t > 0 and i = 1, 2 where x1 = [0, 0], x2 = [ 1
2 , 1

2 ].

With this in mind we take as our data

Y := {θ(tk, xi, q∗, θ0)}i=1,2, tk=0.001k, k=1,...,50

Regarding the observation noise we consider the situation at which each data point is subject to an
independent and identically distributed Gaussian error N(0, ση) with ση = 2−3.

Numerical results.
Figure 8 shows the results of a parameter study for mpCN, Algorithm 5, in ρ and in p the number of

proposals. Two 250, 000-sample chains were run for several ρ values ranging from very aggressive step
sizes (low ρ) to very conservative step sizes (high ρ) for the original ‘vanilla’ pCN algorithm and for
multiproposal pCN with 8, 16 and 64 proposals. The figure shows the average across these two chains
for each case. The plot on the left shows the acceptance rate for the chains; we see that adding proposals
of course increases the acceptance rate for most of the range of ρ values, although the effect diminishes
as the number of proposals grows large.

It is perhaps worth noting that the acceptance rate for p = 8 was lower than for vanilla pCN when ρ

was set to be very low (overly-aggressive); likely this is because use of the Barkerized acceptance ratio,
(4.22), rather than the traditional MH ratio increases the chance of rejection of a given proposal. The
right-hand plot shows the number of samples required to achieve an effective sample – i.e., the number
of samples divided by the effective sample size (ESS), where ESS is calculated according to (Gelman
et al., 2014, Section 11.5)—computed with the unnormalized posterior density (the log-prior plus the log-
likelihood) as the estimand of interest and using the final 100, 000 samples from each chain. The results
show that using multiple proposals reduced the number of samples required to generate a statistically
independent sample by nearly an order of magnitude, from roughly 200 samples in the best cases for
pCN to approximately 50 samples for 16 proposals and 35 samples for 64 proposals, respectively. Also,
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Fig. 8. Sweep of tuning parameters ρ and p for the advection-diffusion problem with 250,000 samples (average values across
two chains) generated using mpCN (Algorithm 5) and pCN. Left: Acceptance rate. Right: Samples per effective sample of the
(unnormalized) posterior density (lower is better).

Fig. 9. Posterior two-dimensional histograms for the first few components of the advection-diffusion problem. From left: (1)
‘Truth’ from Borggaard et al. (2020); (2) pCN (ρ = 0.980) after 250,000 samples; (3) and (4) two chains of multiproposal pCN
(Algorithm 5) (ρ = 0.968, 64 proposals) after 250,000 samples.

when the step size was well-tuned to an acceptance rate of 30 − 50% even 8 or 16 proposals seemed to
be enough to substantially improve performance according to this metric.

Based on the results shown in Figure 8, we selected ‘optimal’ ρ values of 0.980 for vanilla pCN and
0.968 for multiproposal pCN with 64 proposals. Figure 9 compares the results of the two-dimensional
histograms for the first few components of the posterior measure for these ρ values compared with the
‘true’ posterior (computed via many long chains) from Borggaard et al. (2020), which is shown in the
plot on the left. The result a pCN chain is show in the second figure from the left and two 64-proposal
multiproposal pCN chains are shown in the figures on the right. We see that through 250,000 samples
the pCN chain has yet to explore the multimodal structure that characterizes the posterior; a second pCN
chain was run for this ρ value and yielded the same result. The two multiproposal pCN chains, by contrast,
appear to have fully explored the ‘gentle’ multimodality in the second and fourth components; one of
the two chains has also made the larger jump between modes in the first and third components, although
the balance between modes has not yet been achieved. These results show the promise of multiproposal
methods for exploring complex posterior measures in high-dimensional spaces.

5.2.3 Estimation of boundary shape characteristics in a rotating Stokes flow. Our final statistical
inversion problem is a shape estimation problem from Borggaard et al. (2023) wherein the unknown
parameter q specifies the shape of a domain upon which a system of PDEs is defined. The forward map
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Table 1 Parameter choices for the Stokes problem.

Parameter Value Parameter Value

Observations, O (5.3) Sectoral Scalar Variance (5.21) Sampling dimension, K 320
Data, Y = (y1, y2, y3, y4) (5.1) y1 = y3 = 0.4, y2 = y4 = 0 Angular Velocity, ω̄ (5.15) 10
Prior, μ0 (5.2) a2k−1, a2k ∼ N(0, k−2s−1) Mean radius, a0 (5.20) 1.0
Noise, η (5.1) N(0, σ 2

η I), ση = 0.05 Diffusion, κ (5.14) 1.0
Radius Constraints (5.18) rmin = 0.5, rmax = 1.5, R = 2 Number of B-splines 160
Source, f (x) (5.14) 4 exp[−(x − x0)

2/100], x0 =
(1.5, 1)

Range for c, ε 0.1

therefore requires solving the PDEs on an irregular domain, making the derivation of an appropriate
adjoint method a difficult task. Furthermore, typical implementation will involve the use of a meshing
algorithm, often third-party and black box to re-mesh the domain at each iteration step, ruling out use of
automatic differentiation algorithms. This problem is therefore a natural fit for exploration of gradient-
free methods such as Algorithm 5.

Problem specification.
We specify our shape estimation problem in the statistical inversion framework, (5.1), as follows.

Start with the forward map G . Consider a steady (i.e. time-independent) Stokes flow coupled to an
advection-diffusion equation describing the equilibrium concentration of solute sitting passively in this
flow. The governing PDEs for this situation are

νΔu = ∇p, ∇ · u = 0, u · ∇θ = κΔθ + f in Dq. (5.14)

The unknown parameter q determines the shape of an annular domain Dq ⊂ R
2 with a circular outer

boundary on Γ o
q and unknown inner boundary Γ i

q. Here u : Dq → R
2, p : Dq → R represent the

fluid velocity and pressure and θ : Dq → R is the concentration of the solute. The physical constants
ν, κ > 0 are the viscosity and diffusivity while f is a source continuously injecting solute into the system.
Regarding boundary conditions for our problem, we posit

u = ω̄x⊥ on Γ o
q and u = 0 on Γ i

q, θ = 0 on on Γ o
q and ∇θ · n̂ = 0 on Γ i

q, (5.15)

that is the fluid is being rotated at its outer boundary with a rate ω̄ ∈ R. Here n̂ is the outward normal to
Γ i

q so that ∇θ · n̂ = 0 represents an insulation condition if we interpret θ as the temperature of the fluid.
The precise values of the various physical parameters ν, κ , ω̄ as well as the form of f , which we used for
our test example are given in Table 1 below.

We specify our fluid domain Dq as a function of q as follows. We suppose that the parameter space
X is given by the collection of 2π periodic functions with Sobolev regularity s > 0 namely

X = Hs :=
{

q : [0, 2π ] → R : q(x) :=
∞∑

k=1

(a2k−1 cos(kx) + a2k sin(kx)), ‖q‖Hs < ∞
}

(5.16)

where

‖q‖2
Hs := 1

2

∞∑
k=1

k2s(a2
2k−1 + a2

2k). (5.17)
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Here s will determine the ‘degree of smoothness’ of the inner boundary Γ i
q. To define the map associating

each q ∈ X its associated Dq, we let

D := {x ∈ R
2 : rmin < |x| ≤ R}. (5.18)

Our domains Dq are defined so that they always contain the subdomain

D0 := {x ∈ R
2 : rmax ≤ |x| ≤ R}, (5.19)

for some 0 < rmin < rmax < R. We denote by (φ, | · |) : D → [0, 2π) × [rmin, R] the conversion to
polar coordinates. To ensure that the inner radius does not decrease below rmin or extend too far into
the domain, we next fix a ‘clamping’ function c : R → (rmin, rmax) to be a smooth strictly increasing
function with

lim
t→−∞ c(t) = rmin, lim

t→∞ c(t) = rmax.

To limit the effect of clamping on the shapes, we used quadratic interpolation to develop a smooth c that
changes the radius only within a given range ε of either boundary rmin or rmax; the precise form of this
interpolant is given in (Borggaard et al., 2023, Section 3.2.2). With c in place, the radius of the inner
boundary for a given angle φ is then given by c(q(φ)). Then given any q : R → R that is sufficiently
smooth and 2π periodic, we consider the domain

Dq := {x ∈ R
2 : c(a0 + q(φ(x))) ≤ |x| ≤ R}, (5.20)

where a0 is a fixed mean radius and and denote the boundary as

Γ i
q := {x ∈ R

2 : c(a0 + q(φ(x))) = |x|}, Γ o := {x ∈ R
2 : |x| = R}.

This procedure to construct annular domains Dq is visualized in Figure C19.

Having specified in (5.14), (5.15) and (5.20) the ‘parameter to solution map’ Ŝ portion of the forward
map G in (5.3), it remains to describe our observation procedure O . In fact there are a number of different
physically interesting possibilities O that yield interesting statistics; see Borggaard et al. (2023) for
further details. For our purposes here we restrict our attention to a procedure based on the observation of
scalar variance by quadrant. Scalar variance is an important metric for mixing; low scalar variance
indicates that θ has been well mixed while high scalar variance indicates that θ has been ‘trapped’
somewhere in the region.

To make this precise define φj = jπ/2 for j = 0, . . . , 4 and define the quadrants

Qj(Dq) = {x ∈ Dq : φj−1 < φ(x) ≤ φj}
for j = 1, . . . , 4. Then we define the four observations to be the average scalar variance for each of the
four quadrants, i.e.,

Oj(u, θ , Dq) := 1

|Dq|
ˆ

Qj(Dq)

(
θ(x; u) − 1

|Dq|
ˆ

Dq

θ(y; u)dy
)2

dx, (5.21)

where |Dq| is the area of the domain Dq so that the observations sum to the average scalar variance
across the whole domain.

For the data, Y = (y1, y2, y3, y4) in (5.1), we choose high scalar variance (indicating that the scalar
should be trapped) in the first and third quadrants and low scalar variance (indicating that the scalar
should be mixed) in the second and fourth quadrants. For the observational noise η in (5.1) we assume
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48 Glatt-Holtz et al.

Fig. 10. Sweep of tuning parameters ρ and p for the Stokes problem with 10,000 samples generated using mpCN (Algorithm 5)
and pCN. Left: Acceptance rate. Right: Samples per effective sample of the (unnormalized) posterior density (lower is better).

that each sectorial observation is perturbed by an independent mean zero Gaussian noise. See Table 1
for precise parameter values for Y and the distribution of η.

To parameterize the inner boundary, we let the components {ak}∞k=1 be our unknown parameters. For
the prior measure on these parameters, we choose μ0 = N(0, C) where C is a diagonal operator such that
components ak, k ≥ 1, are mutually independent and distributed as a2k−1, a2k ∼ N(0, k−2s−1). Using

(5.17), this ensures that draws from the prior are almost surely elements of Hs′ for any s′ < s:

E‖q‖2
Hs = E

[
1

2

∞∑
k=1

k2s(a2
2k−1 + a2

2k)

]
= 1

2

∞∑
k=1

k2s
E(a2

2k−1 + a2
2k) =

∞∑
k=1

k−1−2(s−s′) < ∞. (5.22)

To compute the forward map G (q) numerically from a given (finite) array of components {ak}K
k=1, we

(1) compute the Fourier expansion (5.16), (2) compute the optimal B-spline approximation to the Fourier
expansion, (3) clamp via c to get a B-spline representation of the inner boundary Γ i

q, (4) mesh the interior
of the domain Dq with Gmsh (Geuzaine & Remacle, 2009), a popular meshing software, (5) solve the
Stokes and advection-diffusion PDEs (5.14), (5.15) via a finite element solver, and (6) compute the obser-
vations by computing the integrals in (5.21). Here step (2) is included because a B-spline representation
is required by Gmsh. Additional details are available in Borggaard et al. (2023); code implementing the
full solver and MCMC routines are publicly available at https://github.com/jborggaard/BayesianShape.
Figure C20 shows plots of the solution to the coupled Stokes and advection-diffusion equations; the
example was taken from a sample from one of the multiproposal pCN chains described below.

The remaining problem parameters are summarized in Table 1.

Numerical results.
PDE solves for the Stokes problem (5.14)–(5.15) are, due to the irregular boundary conditions that

change for each choice of parameter, quite a bit more expensive than for the advection-diffusion example,
(5.8) covered in Section 5.2.2. For this reason, we limit the number of proposals to eight and the chains
to 10, 000 samples each. We begin by presenting the acceptance rate and samples per effective sample by
MCMC method and pCN ρ parameter, which are shown in Figure 10. Each value shown is the average
across two chains. To minimize the effects of burn in, the effective sample size in this case was computed
on the final 5, 000 samples of the 10, 000-sample chains. As in the analogous figure for the advection-
diffusion example (Figure 8), this shows that multiproposal pCN yields higher acceptance rates and
requires fewer samples to achieve an effective sample for a given choice of ρ.
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Fig. 11. Running averages of inner boundary enclosed area (left) and primary angle (right) by ρ (color) and MCMC method (pCN
dashed and multiproposal pCN (Algorithm 5) solid).

We now consider convergence of two quantities of interest that provide key information about the
boundaries that make up the posterior. The first is the area enclosed by the inner boundary, which
describes the size of the domain Dq. The second is the principal angle associated with the inner
boundary, which is given by the orientation of its first Fourier component, i.e., arctan(Im(z)/Real(z))
where z = ´ 2π

0 eiφc(b(x)) dφ. This scalar quantity describes the polar orientation where the radius of
the inner boundary tends to be largest. Figure 11 shows running averages for these two scalar quantities;
the results are given for both pCN and multiproposal pCN with eight proposals, with two chains run for
each of three values of pCN’s ρ parameter. The results in each case show that the multiproposal chains
have, for the most part, converged to a steady state about halfway through the 10,000 sample chains; the
pCN chains, meanwhile, still deviate quite a bit from each other and what appears to be the true value.

Finally, we can consider the computed distributions on the shapes for each MCMC method. Figure 12
shows radius quantiles by angle for pCN and multiproposal (p = 8) pCN chains; to generate the figure,
we compute the radius of the inner boundary at each angle for each sample and then tabulate the quantiles
of the set of radii for that angle. The bowtie shape of the boundaries are a result of the desire to ‘trap’ the
scalar θ in the first and third quadrants as dictated by the data. The two quantile plots are largely similar,
although the pCN (left) plot shows significant divergence in the tails (e.g., the 90th percentile in the third
quadrant) as a result of the slower convergence.

6. Outlook

Moving forward, the present work suggests a number of avenues for future research. First, certain
foundational questions remain to be addressed stemming from our analysis in Section 2 and Section 3. It
is clear that these two formalisms, namely Algorithm 1 and Algorithm 3, do not entirely coincide while
nevertheless demonstrate a significant overlapping scope. This overlapping scope includes conditionally
independent proposal structures encompassing important examples, i.e., Algorithm 4 and Algorithm 5.
See Remark 3.8. In any case, a systematic account of the relationship between the formulations leading
to Algorithm 1, Algorithm 3 remain elusive at the time of writing. Note also that Theorem 3.3 only
addresses invariance (i.e., lack of bias) with respect to the target whereas Theorem 2.2 and the other
results in Section 2 provide comprehensive conditions for reversibility. Thus, this question of reversibility
for the framework in Section 3 and its significance at the level of the extended (indexed) phase space
remain to be addressed.
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Fig. 12. Radius quantiles for 10,000 samples with ρ = 0.917. Left: pCN. Right: multiproposal pCN (Algorithm 5) with 8 proposals.

Leaving aside these general considerations, we would like to emphasize the scope for novel concrete
pMCMC algorithm design and development from our formalisms (and other potential generalizations of
these formalisms), which we initiated above in Section 4 is far from exhausted. For example, mpCN
(Algorithm 5, Algorithm 6) suggests that a number of other such ‘infinite-dimensional’ sampling
methods, namely ∞HMC and ∞MALA, (Beskos et al., 2011; Cotter et al., 2013), can be fruitfully
extended to the multiproposal setting. We would also like to emphasize that Section 4.3 only scratches
the surface as far as the range of possible formulations for multiproposal variants of the Hamiltonian
(Hybrid) Monte Carlo paradigm.

Note that our high-performance computing studies suggest the potential of using GPUs to power
pMCMC implementations with massive numbers of proposals, and Holbrook (2023b) shows that
quantum computing also provides speedups for pMCMC. From an engineering perspective, our extended
phase space formulation of pMCMC may motivate further high-performance computing methods that
support gradient based pMCMC such as that of Section 4.3. From a theoretical perspective, the
same extended phase space formulation may extend to other pMCMC algorithms motivated by novel
computational paradigms. For example, it has been demonstrated that parallel, asynchronous updates
of different parameters within Gibbs sampling is theoretically valid so long as one can bound latency
between updates (Terenin et al., 2020). If each multiproposal constitutes a (many-pronged) fork in the
road, we are interested in pMCMC algorithms that employ a branching structure, accepting multiple
proposals at once and conditionally assigning multiple individual iterations to new nodes. Such a viral
program could prove useful on large computing resources with nodes constantly going on- and off-line.

Another outstanding question is that of optimal scaling. Here, one has additional degrees of freedom
to consider beyond those of the traditional random walk Monte Carlo analysis (Gelman et al., 1997).
Optimal scaling should depend on the number of proposals, and the optimal number of proposals should
depend on the specific form of the acceptance probabilities (e.g., (2.8) or (2.10)). A useful analysis should
account for multimodal structure of the target distribution, i.e., the number of modes and their mutual
distances relative to individual scales.

Related to this question of optimal scaling is the establishment of mixing rates and geometric
ergodicity for various pMCMC algorithms applied to specific target distributions. Ultimately one would
like to rigorously quantify the improvements in mixing rates on a per sample basis in comparison to
traditional single proposal methods. Here, one might suspect that mixing improves monotonically with
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the number of proposals but any rigorous justification of this conjecture appears to be far from reach at
present. More tractably than simply establishing mixing rates for, e.g., Algorithm 5 one may appeal to
the strategies from Glatt-Holtz & Mondaini (2021); Hairer et al. (2014) as a fruitful starting point. These
works use a weak Harris theorem and a generalized coupling argument to establish geometric ergodicity
for, respectively, pCN and HMC in infinite-dimensional Hilbert spaces.

Finally, rigorous investigation is outside the scope of this manuscript, but intuition suggests that the
truncation of acceptance probabilities in MH-type mechanism (2.18) might result in poor performance in
the large proposal limit. An in depth study of the relative benefits of the MH-type (2.18) and Barker-type
(2.17) acceptance probabilities remains for future work.
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A. Appendix: Some measure-theoretic tools

This first appendix gathers together for the convenience of the reader some measure theoretic elements
used extensively throughout the manuscript. We refer to e.g. Aliprantis & Border (2013); Bogachev
(2007); Folland (1999) for further general background.
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Let (X , ΣX ) and (Y , ΣY ) be measurable spaces. Given a measurable function φ : X → Y and
a measure ν on (X , ΣX ), the pushforward of ν by φ, denoted φ∗ν, is the measure on Y defined as

φ∗ν(E) := ν(φ−1(E)) for all E ∈ ΣY . (A.1)

In a statistical context, we notice that if w is a random variable with probability distribution given by a
measure ν then φ(w) is another random variable that is distributed as φ∗ν.

For any measurable functions φ1, φ2 defined on appropriate spaces so that the composition φ1 ◦ φ2
makes sense, it follows immediately from (A.1) that

(φ1 ◦ φ2)
∗ν = φ∗

1 (φ∗
2ν).

We also recall the following change of variables formula regarding pushforward measures. Namely,
given a (φ∗ν)-integrable function ψ : Y → R, i.e. ψ ∈ L1(φ∗ν), it follows that the composition
ψ ◦ φ : X → R belongs to L1(ν) andˆ

Y
ψ(w)φ∗ν(dw) =

ˆ
X

ψ(φ(w))ν(dw). (A.2)

In the particular case when X = R
N and ν is any Borel measure on R

N that is absolutely continuous
with respect to Lebesgue measure, namely

ν(dw) = π(w)dw

for some density function π : RN → R, then for any diffeomorphism φ : RN → R, we have

φ∗ν(dw) = π(φ−1(w))| det ∇φ−1(w)|dw. (A.3)

Further, recall that a measure ν on (X , ΣX ) is absolutely continuous with respect to another measure
ρ on (X , ΣX ), denoted ν 
 ρ, if ν(E) = 0 whenever ρ(E) = 0, for E ∈ ΣX . If ν and ρ are
two sigma-finite measures on (X , ΣX ) such that ν 
 ρ then there exists a ρ-almost unique function
dν/dρ ∈ L1(ρ) such that

ν(E) =
ˆ

E

dν

dρ
(w)ρ(dw), E ∈ ΣX ,

called the Radon-Nikodym derivative of ν with respect to ρ. Moreover, given sigma-finite measures ν,
ρ and γ on (X , ΣX ) such that ν 
 ρ and ρ 
 γ , it follows that ν 
 γ and

dν

dγ
(w) = dν

dρ
(w)

dρ

dγ
(w) for γ -a.e.w ∈ X .

In particular, if ν1, ν2 and ρ are sigma-finite measures on (X , ΣX ) with ν1 
 ρ and ν2 
 ρ, so that

ν1(dw) = φ1(w)ρ(dw), ν2(dw) = φ2(w)ρ(dw),

where φ1 = dν1/dρ and φ2 = dν2/dρ, and if φ2 > 0 ρ-a.e., then ν1 
 ν2 and

dν1

dν2
(w) = φ1(w)

φ2(w)
for ρ -a.e.w ∈ X . (A.4)

Finally, under the above definitions the following identities can be easily verified, see (Glat–Holtz
et al., 2023, Section 2.1). Firstly, given a measurable and invertible mapping φ : X → X with
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measurable inverse φ−1 : X → X , and sigma-finite measures ν and ρ on (X , ΣX ) with ν 
 ρ,
it follows that φ∗ν 
 φ∗ρ and

dφ∗ν
dφ∗ρ

(w) = dν

dρ
(φ−1(w)) for (φ∗ρ) -a.e.w ∈ X . (A.5)

Secondly, if ν is a sigma-finite measure on (X , ΣX ), and φi : X → X , i = 1, . . . , n, a sequence of
measurable and invertible functions with measurable inverses φ−1

i : X → X such that φ∗
i ν 
 ν for

all i = 1, . . . , n, then (φn ◦ · · · ◦ φ1)
∗μ 
 μ and

d(φn ◦ · · · ◦ φ1)
∗μ

dμ
(w) = dφ∗

nμ

dμ
(w)

n−1∏
i=1

dφ∗
i μ

dμ
((φn ◦ · · · ◦ φi+1)

−1(w)) for μ -a.e.w ∈ X . (A.6)

B. Appendix: Rigorous Proofs

This appendix gathers together the rigorous proofs for all the claims made above in Section 2, Section 3
and Section 4.

B.1 Proof of Theorem 2.2

To show that (H1) and (H2) imply μPα,S,V = μ, notice that for any bounded and measurable function
ϕ : X → R we haveˆ

X
ϕ(q)μPα,S,V (dq) =

ˆ
X

ϕ(q)

ˆ
X

Pα,S,V (q̃, dq)μ(dq̃)

=
p∑

j=0

ˆ
X

ˆ
X

ˆ
Y

ϕ(q)αj(q̃, v)δΠ1Sj(q̃,v)(dq)V (q̃, dv)μ(dq̃)

=
p∑

j=0

ˆ
X

ˆ
Y

ϕ(Π1Sj(q̃, v))αj(q̃, v)M (dq̃, dv)

=
p∑

j=0

ˆ
X

ˆ
Y

ϕ(q̃)αj(Sj(q̃, v))S∗
j M (dq̃, dv) =

ˆ
X

ϕ(q̃)μ(dq̃).

Since ϕ is arbitrary, this implies μPα,S,V = μ as desired.
For the second part of the statement, the fact that (H3) implies (H2) follows immediately upon

summing (2.5) over j = 0, . . . , p, taking the integral over Y and invoking (2.1). For (2.6), it suffices
to show that for every bounded and measurable function ψ : X × X → R, we have

p∑
j=0

ˆ
X

ˆ
Y

ψ(q, Π1 ◦ Sj(q, v))αj(q, v)M (dq, dv) =
p∑

j=0

ˆ
X

ˆ
Y

ψ(Π1 ◦ Sj(q̃, v), q̃)αj(q̃, v)M (dq̃, dv).

(B.1)
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Invoking (H1) and changing variables, cf. (A.2), we obtain that
p∑

j=0

ˆ
X

ˆ
Y

ψ(q, Π1 ◦ Sj(q, v))αj(q, v)M (dq, dv)

=
p∑

j=0

ˆ
X

ˆ
Y

ψ(Π1 ◦ Sj ◦ Sj(q, v), Π1 ◦ Sj(q, v))αj(Sj ◦ Sj(q, v))M (dq, dv)

=
p∑

j=0

ˆ
X

ˆ
Y

ψ(Π1 ◦ Sj(q, v), q)αj(Sj(q, v))S∗
j M (dq, dv). (B.2)

Now from (H3) we deduce (B.1), completing the proof.

B.2 Proof of Corollary 2.4

We first notice that S∗
j M 
 (S∗

0M + · · · + S∗
pM ), for each j = 0, . . . , p, so that the Radon-Nikodym

derivative in (2.8) is well-defined. Moreover, clearly
p∑

j=0

dS∗
j M

d(S∗
0M + · · · + S∗

pM )
(q, v) = d(S∗

0M + · · · + S∗
pM )

d(S∗
0M + · · · + S∗

pM )
(q, v) = 1 (B.3)

for
(∑p

j=0 S∗
j M

)
-a.e. (q, v) ∈ X×Y , which implies that αj, j = 0, . . . , p, are well-defined, and condition

(2.1) from (H3) in Theorem 2.2 holds.
It remains to verify (2.5). Since Sj ◦ Sj = I, it follows from (A.5) that M 
 S∗

j (S
∗
0M + · · ·+ S∗

pM )

and

dM

dS∗
j (S

∗
0M + · · · + S∗

pM )
(q, v) = dS∗

j M

d(S∗
0M + · · · + S∗

pM )
(Sj(q, v)) = αj(Sj(q, v))

for S∗
j

(∑p
k=0 S∗

kM
)
-a.e. (q, v) ∈ X × Y . But from our assumption (2.7), we have

S∗
j (S

∗
0M + · · · + S∗

pM ) = (Sj ◦ S0)
∗M + · · · + (Sj ◦ Sp)

∗M = S∗
0M + · · · + S∗

pM .

Hence, M 
 S∗
0M + · · · + S∗

pM and

dM

d(S∗
0M + · · · + S∗

pM )
(q, v) = αj(Sj(q, v)) for

⎛⎝ p∑
j=0

S∗
j M

⎞⎠ -a.e.(q, v) ∈ X × Y .

We thus obtain

αj(Sj(q, v))S∗
j M (dq, dv) = dM

d(S∗
0M + · · · + S∗

pM )
(q, v) S∗

j M (dq, dv)

= dM

d(S∗
0M + · · · + S∗

pM )
(q, v)

dS∗
j M

d(S∗
0M + · · · + S∗

pM )
(q, v) (S∗

0M + · · · + S∗
pM )(dq, dv)

=
dS∗

j M

d(S∗
0M + · · · + S∗

pM )
(q, v) M (dq, dv) = αj(q, v)M (dq, dv),

so that (2.5) also holds. Therefore, condition (H3) of Theorem 2.2 is satisfied. This concludes the proof.
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B.3 Proof of Corollary 2.6

Clearly, condition (2.1) follows immediately from the definition of α0. Regarding (2.5), the case j = 0
is readily verified since S0 = I. For j = 1, . . . , p,

αj(Sj(q, v))S∗
j M (dq, dv) = αj

(
1 ∧ dS∗

j M

dM
(Sj(q, v))

)
dS∗

j M

dM
(q, v)M (dq, dv)

= αj

[
dS∗

j M

dM
(q, v) ∧

(
dS∗

j M

dM
(Sj(q, v))

dS∗
j M

dM
(q, v)

)]
M (dq, dv).

From (A.6) and since Sj ◦ Sj = I, we deduce that

αj(Sj(q, v))S∗
j M (dq, dv) = αj

[
1 ∧ dS∗

j M

dM
(Sj(q, v))

]
dS∗

j M

dM
(q, v)M (dq, dv)

= αj

[
dS∗

j M

dM
(q, v) ∧ 1

]
M (dq, dv) = αj(q, v)M (dq, dv),

so that (2.5) also holds in this case. This concludes the proof.

B.4 Proof of Theorem 2.10

Recall that σ -finite measures on (Xp, ΣXp) are uniquely determined by their evaluation on cylinder sets
of the form E = A0 × · · · × Ap where Aj ∈ ΣX . Thus, it suffices to verify that

p∑
k=0

ˆ
Xp+1

ϕ(q0, v)(Sj ◦ Sk)
∗M (dq0, dv) =

p∑
k=0

ˆ
Xp+1

ϕ(q0, v)S∗
kM (dq0, dv), (B.4)

for every j = 0, 1, . . . , p, and all ϕ : Xp+1 → R of the form

ϕ(q0, v) =
p∏

l=0

ϕl(ql), (q0, v) = (q0, q1, . . . , qp) ∈ Xp+1,

with bounded and measurable functions ϕl : X → X, l = 0, 1, . . . , p.
Clearly, (B.4) holds for j = 0, so we may assume from now on that j ∈ {1, . . . , p}. Now for any such

j, noting that Sk is an involution for each k = 0, 1, . . . , p we infer that (B.4) reduces to showing that
p∑

k=1
k 
=j

ˆ
Xp+1

ϕ(q0, v)(Sj ◦ Sk)
∗M (dq0, dv) =

p∑
k=1
k 
=j

ˆ
Xp+1

ϕ(q0, v)S∗
kM (dq0, dv). (B.5)
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Regarding the right-hand side of (B.5), we obtain by changing variables, (A.2), and recalling the
definition of M that for every k = 1, . . . , p

ˆ
Xp+1

ϕ(q0, v)S∗
kM (dq0, dv) =

ˆ
Xp+1

ϕ(Sk(q0, v))M (dq0, dv)

=
ˆ

Xp+1
ϕ(qk, q1, . . . , qk−1, q0, qk+1, . . . , qp)

ˆ
X

p∏
i=1

Q(q, dqi)Q(q0, dq)μ(dq0)

=
ˆ

Xp+2
ϕ0(qk)ϕk(q0)

p∏
l=1
l 
=k

ϕl(ql)

p∏
i=1

Q(q, dqi)Q(q0, dq)μ(dq0) (B.6)

=
ˆ

X2
ϕk(q0)

(ˆ
X

ϕ0(qk)Q(q, dqk)

) p∏
l=1
l 
=k

(ˆ
X

ϕl(ql)Q(q, dql)

)
Q(q0, dq)μ(dq0)

=
ˆ

X2
ϕk(q0) Qϕ0(q)

p∏
l=1
l 
=k

Qϕl(q) Q(q0, dq)μ(dq0)

=
ˆ

X
ϕk(q0)

ˆ
X

p∏
l=0
l 
=k

Qϕl(q) Q(q0, dq)μ(dq0), (B.7)

where we recall the notation Q̃φ(q) = ´
φ(q′)Q̃(q, dq′) for the action of a Markov kernel Q̃ on a

measurable function φ.
Turning to the left-hand side of (B.5), it follows once again by change of variables and the definition

of M that for every k = 1, . . . , p with k 
= j,

ˆ
Xp+1

ϕ(q0, v)(Sj ◦ Sk)
∗M (dq0, dv) =

ˆ
Xp+1

ϕ(Sj ◦ Sk(q0, v))M (dq0, dv)

=
ˆ

Xp+2
ϕ0(qj)ϕj(qk)ϕk(q0)

p∏
l=1

l 
=k,j

ϕl(ql)

p∏
i=1

Q(q, dqi) Q(q0, dq) μ(dq0)

=
ˆ

X2
ϕk(q0)

(ˆ
X

ϕ0(qj)Q(q, dqj)

)(ˆ
X

ϕj(qk)Q(q, dqk)

) p∏
l=1

l 
=k,j

(ˆ
X

ϕl(ql)Q(q, dql)

)
Q(q0, dq) μ(dq0)

=
ˆ

X
ϕk(q0)

ˆ
X

p∏
l=0
l 
=k

Qϕl(q) Q(q0, dq) μ(dq0). (B.8)

Comparing (B.8) with (B.7) and summing yields (B.5) and hence (B.4). This concludes the proof of
(2.14). The second part of the statement follows immediately from Corollary 2.4.
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B.5 Proof of Theorem 2.11

We need to establish the absolute continuity S∗
j M 
 M and (2.16) for j = 0, . . . , p. Since S0 = I,

clearly this holds for j = 0. Now we consider j ∈ {1, . . . , p}. Let M0(dq0, dv) := V (q0, dv)μ0(dq0).
We first claim that assumption (2.15) implies that S∗

j M0 = M0. Indeed, take any measurable and

bounded function ϕ : Xp+1 → R. By change of variables, (A.2), and the definitions of V and Sj,
j = 1, . . . , p, in (2.12)–(2.13) it follows that

ˆ
Xp+1

ϕ(q0, v)S∗
j M0(dq0, dv) =

ˆ
Xp+1

ϕ(Sj(q0, v))M0(dq0, dv)

=
ˆ

Xp+1
ϕ(qj, q1, . . . , qj−1, q0, qj+1, . . . , qp)

ˆ
X

p∏
i=1

Q(q, dqi)Q(q0, dq)μ0(dq0).

From (2.15) and Fubini’s theorem, we thus obtain

ˆ
Xp+1

ϕ(q0, v)S∗
j M0(dq0, dv) =

ˆ
Xp+1

ϕ(qj, q1, . . . , qj−1, q0, qj+1, . . . , qp)

ˆ
X

p∏
i=1

Q(q, dqi)Q(q, dq0)μ0(dq)

=
ˆ

Xp+2
ϕ(qj, q1, . . . , qj−1, q0, qj+1, . . . , qp) Q(q, ·)⊗(p+1)(dqj, dq1, . . . , dqj−1, dq0, dqj+1, . . . , dqp) μ0(dq)

=
ˆ

Xp+2
ϕ(q0, q1, . . . , qp) Q(q, ·)⊗(p+1)(dq0, dq1, . . . , dqp) μ0(dq)

=
ˆ

Xp+2
ϕ(q0, q1, . . . , qp)

p∏
i=1

Q(q, dqi)Q(q, dq0)μ0(dq)

=
ˆ

Xp+2
ϕ(q0, q1, . . . , qp)

p∏
i=1

Q(q, dqi)Q(q0, dq)μ0(dq0) =
ˆ

Xp+1
ϕ(q0, v)M0(dq0, dv),

where Q(q, ·)⊗(p+1) denotes the (p + 1)-fold product of the probability measure Q(q, ·). Since ϕ :
Xp+1 → R is an arbitrary measurable and bounded function, we deduce that S∗

j M0 = M0.
Next, again for any such function ϕ, we obtain by invoking the assumption μ 
 μ0 that

ˆ
Xp+1

ϕ(q0, v)S∗
j M (dq0, dv) =

ˆ
Xp+1

ϕ(Sj(q0, v))V (q0, dv)μ(dq0)

=
ˆ

Xp+1
ϕ(Sj(q0, v))

dμ

dμ0
(q0)V (q0, dv)μ0(dq0)

=
ˆ

Xp+1
ϕ(Sj(q0, v))

dμ

dμ0
(Π1(q0, v))M0(dq0, dv)

=
ˆ

Xp+1
ϕ(q0, v)

dμ

dμ0
(Π1 ◦ Sj(q0, v))S∗

j M0(dq0, dv).
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Since S∗
j M0 = M0, then

ˆ
Xp+1

ϕ(q0, v)S∗
j M (dq0, dv) =

ˆ
Xp+1

ϕ(q0, v)
dμ

dμ0
(Π1 ◦ Sj(q0, v))M0(dq0, dv)

=
ˆ

Xp+1
ϕ(q0, v)

dμ

dμ0
(Π1 ◦ Sj(q0, v))

(
dμ

dμ0
(q0)

)−1

M (dq0, dv).

This implies that S∗
j M 
 M and (2.16) holds, which concludes the proof.

B.6 Proof of Theorem 3.3

Let Φ : Z → R be any bounded measurable function. Regarding the first item, (i),

ˆ
Z

Φ(z̃)N R(dz̃) =
ˆ
Z

Φ(q̃, ṽ, k̃)
ˆ
Z

R(q, v, k, dq̃, dṽ, dk̃)N (dq, dv, dk)

=
ˆ
Z

Φ(q̃, ṽ, k̃)
ˆ
Z

S∗
k (Vk(Π1Sk(q, v), dṽ)δΠ1Sk(q,v)(dq̃))δk(dk̃)N (dq, dv, dk)

=
ˆ
Z

Φ(Sk(q̃, ṽ), k̃)
ˆ
Z

Vk(Π1Sk(q, v), dṽ)δΠ1Sk(q,v)(dq̃)δk(dk̃)N (dq, dv, dk)

=
ˆ
Z

ˆ
Y

Φ(Sk(Π1Sk(q, v), ṽ), k)Vk(Π1Sk(q, v), dṽ)N (dq, dv, dk)

=
p∑

j=0

1

p + 1

ˆ
Z

ˆ
Y

Φ(Sk(Π1Sk(q, v), ṽ), k)Vk(Π1Sk(q, v), dṽ)S∗
j Mj(dq, dv)δj(dk)

=
p∑

j=0

1

p + 1

ˆ
Y

ˆ
X×Y

Φ(Sj(Π1Sj(q, v), ṽ), j)Vj(Π1Sj(q, v), dṽ)S∗
j Mj(dq, dv)

=
p∑

j=0

1

p + 1

ˆ
Y

ˆ
X×Y

Φ(Sj(Π1(q, v), ṽ), j)Vj(Π1(q, v), dṽ)Mj(dq, dv)

=
p∑

j=0

1

p + 1

ˆ
Y

ˆ
X×Y

Φ(Sj(q, ṽ), j)Vj(q, dṽ)Vj(q, dv)μ(dq)

=
p∑

j=0

1

p + 1

ˆ
X×Y

Φ(Sj(q, ṽ), j)Vj(q, dṽ)μ(dq)

=
p∑

j=0

1

p + 1

ˆ
X×Y

Φ(q, ṽ, j)S∗
j Mj(dq, dṽ) =

ˆ
Z

Φ(q, ṽ, k)N (dq, dṽ, dk),

as desired. Turning to the second item we have

ˆ
Z

Φ(z̃)N A (dz̃) =
ˆ

Z
Φ(q̃, ṽ, k̃)

ˆ
Z

A (q, v, k, dq̃0, dṽ, dk̃)N (dq, dv, dk)
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=
p∑

j=0

ˆ
Z

Φ(q, v, j)αk,j(q, v)N (dq, dv, dk)

=
p∑

j=0

p∑
l=0

1

p + 1

ˆ
X×Y

Φ(q, v, j)αl,j(q, v)S∗
l Ml(dq, dv)

=
p∑

j=0

1

p + 1

ˆ
X×Y

Φ(q, v, j)
p∑

l=0

αl,j(q, v)S∗
l Ml(dq, dv)

=
p∑

j=0

1

p + 1

ˆ
X×Y

Φ(q, v, j)S∗
j Mj(dq, dv),

where we used (3.13) for the final equality. The third claim follows immediately from the first and
second one.

Turning to the final claim, (iv), we have, for any Φ : X → R bounded and measurable,

ˆ
X

Φ(q)E ∗N (dq) =
ˆ

Z
Φ(E (q, v, k))N (dq, dv, dk) =

p∑
j=0

1

p + 1

ˆ
X×Y

Φ(E (q, v, j))S∗
j Mj(dq, dv)

=
p∑

j=0

1

p + 1

ˆ
X×Y

Φ(Π1Sj(q, v))S∗
j Mj(dq, dv)

=
p∑

j=0

1

p + 1

ˆ
X×Y

Φ(q)Vj(q, dv)μ(dq) =
ˆ

X
Φ(q)μ(dq).

The proof is complete.

B.7 Proof of Proposition 4.4

Since S0 = I then (4.44) is clearly satisfied for j = 0. Let us thus assume from now on that j ∈ {1, . . . , p}.
Since Sj is an involution, namely S2

j = I, then (4.44) reduces to showing that

p∑
k=1
k 
=j

(Sj ◦ Sk)
∗M =

p∑
k=1
k 
=j

S∗
kM . (B.9)

Fix j ∈ {1, . . . , p} and k ∈ {1, . . . , p} with k 
= j. Let ϕ : R
N(p+1) → R be any measurable and

bounded function. It follows by change of variables, (A.2), that

ˆ
RN(p+1)

ϕ(q, v)(Sj ◦ Sk)
∗M (dq, dv) =

ˆ
RN(p+1)

ϕ(Sj ◦ Sk(q, v))F(q, ·)∗(ν ⊗ HN)(dv)μ(dq)

=
ˆ
RN(p+1)

ϕ(Sj ◦ Sk(q, F(q, λ, Q))) ν(dλ)HN(dQ) μ(dq)

=
ˆ
RN(p+1)

ϕ(Sj ◦ Sk(q, q + λQw1, . . . , q + λQwp))ν(dλ)HN(dQ)μ(dq).
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62 Glatt-Holtz et al.

Assuming without loss of generality that j ≥ k, it thus follows from the definition of (S0, . . . , Sp) in
(4.43) that

ˆ
RN(p+1)

ϕ(q, v)(Sj ◦ Sk)
∗M (dq, dv)

=
ˆ
RN(p+1)

ϕ(q + λQwj, q + λQw1, . . . , q + λQwk−1, q, q + λQwk+1, . . . ,

q + λQwj−1, q + λQwk, q + λQwj+1, . . . , q + λQwp) ν(dλ)HN(dQ) μ(dq).
(B.10)

Now let A ∈ ON be the reflection matrix between the vertices wj and wk, so that Awj = wk, Awk =
wj, and A = AT . Concretely, A can be written as I − 2(wj − wk) ⊗ (wj − wk), namely Aw = w −
2〈w, wj − wk〉(wj − wk) for all w ∈ R

N , where 〈·, ·〉 denotes the Euclidean inner product. From the
assumed simplex structure in (4.40), it follows immediately that A leaves all other vertices invariant,
namely Awl = wl for all l ∈ {1, . . . , p} with l 
= j and l 
= k. For any fixed Q ∈ ON , we then define
Q̃ := QAQT . Notice that Q̃ ∈ ON , and from the left-invariant property of the Haar measure HN , (4.41),
we have (Q̃T)∗HN = HN . Using this fact in (B10), we obtain by changing variables and invoking the
properties of A that

ˆ
RN(p+1)

ϕ(q, v)(Sj ◦ Sk)
∗M (dq, dv)

=
ˆ
RN(p+1)

ϕ(q + λQ̃Qwj, q + λQ̃Qw1, . . . , q + λQ̃Qwk−1, q, q + λQ̃Qwk+1, . . . ,

q + λQ̃Qwj−1, q + λQ̃Qwk, q + λQ̃Qwj+1, . . . , q + λQ̃Qwp) ν(dλ)HN(dQ) μ(dq)

=
ˆ
RN(p+1)

ϕ(q + λQAwj, q + λQAw1, . . . , q + λQAwk−1, q, q + λQAwk+1, . . . ,

q + λQAwj−1, q + λQAwk, q + λQAwj+1, . . . , q + λQAwp) ν(dλ)HN(dQ) μ(dq)

=
ˆ
RN(p+1)

ϕ(q + λQwk, q + λQw1, . . . , q + λQwk−1, q, q + λQwk+1, . . . ,

q + λQwj−1, q + λQwj, q + λQwj+1, . . . , q + λQwp) ν(dλ)HN(dQ) μ(dq)

=
ˆ
RN(p+1)

ϕ(Sk(q, F(q, λ, Q))) ν(dλ)HN(dQ) μ(dq)

=
ˆ
RN(p+1)

ϕ(Sk(q, v))F(q, ·)∗(ν ⊗ HN)(dv) μ(dq) =
ˆ
RN(p+1)

ϕ(q, v)S∗
kM (dq, dv).

Since ϕ is arbitrary, we deduce that (Sj ◦ Sk)
∗M = S∗

kM , which shows (.B9) and concludes the proof.
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B.8 Proof of Proposition 4.5

We first notice that since S0 = I, then (4.45) is readily satisfied when j = 0. Let us now fix j ∈ {1, . . . , p}.
For any bounded and measurable function ϕ : RN(p+1) → R, we have

ˆ
RN(p+1)

ϕ(q, v)S∗
j M (dq, dv) =

ˆ
RN(p+1)

ϕ(Sj(q, v))π(q) F(q, ·)∗(ν ⊗ HN)(dv) dq

=
ˆ
RN(p+1)

ϕ(Sj(q, F(q, λ, Q)))π(q) ν(dλ)HN(dQ) dq

=
ˆ
RN(p+1)

ϕ(q + λQwj, q + λQw1, . . . , q + λQwj−1, q, q + λQwj+1, . . . , q + λQwp)π(q) ν(dλ)HN(dQ) dq.

With the change of variables q̃ = q + λQwj, it follows that

ˆ
RN(p+1)

ϕ(q, v)S∗
j M (dq, dv)

=
ˆ
RN(p+1)

ϕ(q̃, q̃ + λQ(w1 − wj), . . . , q̃ + λQ(wj−1 − wj), q̃ − λQwj, q̃ + λQ(wj+1 − wj), . . . ,

q̃ + λQ(wp − wj))π(q̃ − λQwj) ν(dλ)HN(dQ) dq̃. (B.11)

Let us now consider the reflection matrix A of wj about the origin, so that Awj = −wj and A = AT .

This can be written explicitly as A = I − 2wj ⊗ wj, namely Aw = w − 2〈w, wj〉wj for all w ∈ R
N , where

〈·, ·〉 denotes the Euclidean inner product. Then, assumption (4.40) regarding the simplex (w1, . . . , wp, 0)

implies that Awl = wl − wj for all l ∈ {1, . . . , p} with l 
= j.

Next, similarly as in the proof of Proposition 4.4, we define Q̃ = QAQT ∈ ON and notice that
(Q̃T)∗HN = HN by the left-invariance property of HN , (4.41). From (B.11), we thus obtain after change
of variables and the properties of A that

ˆ
RN(p+1)

ϕ(q, v)S∗
j M (dq, dv)

=
ˆ
RN(p+1)

ϕ(q̃, q̃ + λQ̃Q(w1 − wj), . . . , q̃ + λQ̃Q(wj−1 − wj), q̃ − λQ̃Qwj, q̃ + λQ̃Q(wj+1 − wj), . . . ,

q̃ + λQ̃Q(wp − wj))π(q̃ − λQ̃Qwj) ν(dλ)HN(dQ) dq̃

=
ˆ
RN(p+1)

ϕ(q̃, q̃ + λQA(w1 − wj), . . . , q̃ + λQA(wj−1 − wj), q̃ − λQAwj, q̃ + λQA(wj+1 − wj), . . . ,

q̃ + λQA(wp − wj))π(q̃ − λQAwj) ν(dλ)HN(dQ) dq̃

=
ˆ
RN(p+1)

ϕ(q̃, q̃ + λQw1, . . . , q̃ + λQwj−1, q̃ + λQwj, q̃ + λQwj+1, . . . , q̃ + λQwp)) π(q̃ + λQwj)

ν(dλ)HN(dQ) dq̃

=
ˆ
RN(p+1)

ϕ(q̃, F(q̃, λ, Q)) π(Π1Sj(q̃, F(q̃, λ, Q))) ν(dλ)HN(dQ) dq̃
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64 Glatt-Holtz et al.

=
ˆ
RN(p+1)

ϕ(q̃, v) π(Π1Sj(q̃, v))F(q̃, ·)∗(ν ⊗ HN)(dv)dq̃

=
ˆ
RN(p+1)

ϕ(q̃, v)
π(Π1Sj(q̃, v))

π(q̃)
M (dq̃, dv).

Since ϕ is arbitrary, we conclude that

dS∗
j M

dM
(q, v) = π(Π1Sj(q, v))

π(q)
for M -a.e.(q, v) ∈ R

N(p+1).

This shows (4.45) and completes the proof.

C. Appendix: Supplementary Figures

This appendix collects various additional materials from our case studies described in Section 5.

Fig. C13. Mixture of many Gaussians
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Fig. C14. Autocorrelation and convergence plots for pCN and mpCN for increasing values of p over various observables.
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66 Glatt-Holtz et al.

Fig. C15. Time series plots comparing mpCN with p = 100 and pCN for various values of ρ for different observables.
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Fig. C16. Autocorrelation and convergence plots for ergodic averages plots comparing mpCN with p = 100 over various values
of ρ for different observables.
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68 Glatt-Holtz et al.

Fig. C17. Typical draw from the prior μ0 = N(0, C ) with C defined by (5.11). The right panel is curl(q(x)) = (∂x2 q1 −∂x1 q2)(x)

while the left panel is ‖q(x)‖.
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Fig. C18. A grid of histogram of the (fully resolved) two dimensional marginal onto various low frequencies of the posterior
measure. More precisely the i − jth off diagonal is F#

i,jμ where Fi,j(q) = [
´
T2 fi(x) · q(x)dx,

´
T2 fj(x) · q(x)dx] with f2(x, y) =

[0, cos(2πy)], f3(x, y) = [0, − sin(2πy)], f4(x, y) = [cos(2πx), 0], f5(x, y) = [− sin(2πx), 0],f6(x, y) = [0, cos(4πy)], f7(x, y) =
[0, − sin(4πy)], f8(x, y) = [cos(2πx), cos(2πy)], %quadf9(x, y) = [− sin(2πx), sin(2πy)].
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70 Glatt-Holtz et al.

Fig. C19. Diagram of the radius constraints involved in constructing the domain Dq.

Fig. C20. Solutions of the coupled Stokes and advection-diffusion PDEs. Left: Quiver plot of the solution to the Stokes PDE. The
red X marks the point at which the scalar is injected into the system. Right: Contour plot of the solution to the advection-diffusion
equation associated with the Stokes flow in the left-hand plot.
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