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Abstract: Data science has arrived, and computational statistics is its engine. As the scale
and complexity of scientific and industrial data grow, the discipline of computational
statistics assumes an increasingly central role among the statistical sciences. An explosion
in the range of real-world applications means the development of more and more special-
ized computational methods, but five Core Challenges remain. We provide a high-level
introduction to computational statistics by focusing on its central challenges, present
recent model-specific advances, and preach the ever-increasing role of nonsequential
computational paradigms such as multicore, many-core, and quantum computing. Data
science is bringing major changes to computational statistics, and these changes will
shape the trajectory of the discipline in the twenty-first century.

1 Introduction

We are in the midst of the data science revolution. In October 2012, the Harvard Business Review famously
declared data scientist the sexiest job of the twenty-first century[1]. By September 2019, Google searches for
the term “data science” had multiplied over sevenfold[2], one multiplicative increase for each intervening
year. In the United States between the years 2000 and 2018, the number of bachelor’s degrees awarded in
either statistics or biostatistics increased over 10-fold (382–3964), and the number of doctoral degrees
almost tripled (249–688)[3]. In 2020, seemingly every major university has established or is establishing its
own data science institute, center, or initiative.

Data science[4, 5] combines multiple preexisting disciplines (e.g., statistics, machine learning, and com-
puter science) with a redirected focus on creating, understanding, and systematizing workflows that turn
real-world data into actionable conclusions. The ubiquity of data in all economic sectors and scientific
disciplines makes data science eminently relevant to cohorts of researchers for whom the discipline of
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statistics was previously closed off and esoteric. Data science’s emphasis on practical application only
enhances the importance of computational statistics, the interface between statistics and computer science
primarily concerned with the development of algorithms producing either statistical inference1 or predic-
tions. Since both of these products comprise essential tasks in any data scientific workflow, we believe that
the pan-disciplinary nature of data science only increases the number of opportunities for computational
statistics to evolve by taking on new applications2 and serving the needs of new groups of researchers.

This is the natural role for a discipline that has increased the breadth of statistical application from the
beginning. First put forward by R.A. Fisher in 1936[6, 7], the permutation test allows the scientist (who owns
a computer) to test hypotheses about a broader swath of functionals of a target population while making
fewer statistical assumptions[8]. With a computer, the scientist uses the bootstrap[9, 10] to obtain confi-
dence intervals for population functionals and parameters of models too complex for analytic methods.
Newton–Raphson optimization and the Fisher scoring algorithm facilitate linear regression for binary,
count, and categorical outcomes[11, 12]. More recently, Markov chain Monte Carlo (MCMC)[13, 14] has made
Bayesian inference practical for massive, hierarchical, and highly structured models that are useful for the
analysis of a significantly wider range of scientific phenomena.

While computational statistics increases the diversity of statistical applications historically, certain
central difficulties exist and will continue to remain for the rest of the twenty-first century. In Section 2,
we present the first class of Core Challenges, or challenges that are easily quantifiable for generic tasks.
Core Challenge 1 is Big N , or statistical inference when the number “N” of observations or data points
is large; Core Challenge 2 is Big P, or statistical inference when the model parameter count “P” is large;
and Core Challenge 3 is Big M, or statistical inference when the model’s objective or density function
is multimodal (having many modes “M”)3. When large, each of these quantities brings its own unique
computational difficulty. Since well over 2.5 exabytes (or 2.5 × 1018 bytes) of data come into existence
each day[15], we are confident that Core Challenge 1 will survive well into the twenty-second century.

But Core Challenges 2 and 3 will also endure: data complexity often increases with size, and researchers
strive to understand increasingly complex phenomena. Because many examples of big data become “big”
by combining heterogeneous sources, big data often necessitate big models. With the help of two recent
examples, Section 3 illustrates how computational statisticians make headway at the intersection of big
data and big models with model-specific advances. In Section 3.1, we present recent work in Bayesian
inference for big N and big P regression. Beyond the simplified regression setting, data often come with
structures (e.g., spatial, temporal, and network), and correct inference must take these structures into
account. For this reason, we present novel computational methods for a highly structured and hierarchical
model for the analysis of multistructured and epidemiological data in Section 3.2.

The growth of model complexity leads to new inferential challenges. While we define Core Challenges
1–3 in terms of generic target distributions or objective functions, Core Challenge 4 arises from inherent
difficulties in treating complex models generically. Core Challenge 4 (Section 4.1) describes the diffi-
culties and trade-offs that must be overcome to create fast, flexible, and friendly “algo-ware”. This Core
Challenge requires the development of statistical algorithms that maintain efficiency despite model struc-
ture and, thus, apply to a wider swath of target distributions or objective functions “out of the box”. Such
generic algorithms typically require little cleverness or creativity to implement, limiting the amount of time
data scientists must spend worrying about computational details. Moreover, they aid the development of
flexible statistical software that adapts to complex model structure in a way that users easily understand.
But it is not enough that software be flexible and easy to use: mapping computations to computer hardware
for optimal implementations remains difficult. In Section 4.2, we argue that Core Challenge 5, effective use
of computational resources such as central processing units (CPU), graphics processing units (GPU), and
quantum computers, will become increasingly central to the work of the computational statistician as data
grow in magnitude.
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2 Core Challenges 1–3

Before providing two recent examples of twenty-first century computational statistics (Section 3), we
present three easily quantified Core Challenges within computational statistics that we believe will always
exist: big N , or inference from many observations; big P, or inference with high-dimensional models;
and big M, or inference with nonconvex objective – or multimodal density – functions. In twenty-first
century computational statistics, these challenges often co-occur, but we consider them separately in this
section.

2.1 Big N

Having a large number of observations makes different computational methods difficult in different
ways. A worst case scenario, the exact permutation test requires the production of N! datasets. Cheaper
alternatives, resampling methods such as the Monte Carlo permutation test or the bootstrap, may
require anywhere from thousands to hundreds of thousands of randomly produced datasets[8, 10]. When,
say, population means are of interest, each Monte Carlo iteration requires summations involving N
expensive memory accesses. Another example of a computationally intensive model is Gaussian process
regression[16, 17]; it is a popular nonparametric approach, but the exact method for fitting the model and
predicting future values requires matrix inversions that scale (N3). As the rest of the calculations require
relatively negligible computational effort, we say that matrix inversions represent the computational
bottleneck for Gaussian process regression.

To speed up a computationally intensive method, one only needs to speed up the method’s computational
bottleneck. We are interested in performing Bayesian inference[18] based on a large vector of observa-
tions 𝐱 = (x1, … , xN ). We specify our model for the data with a likelihood function π(𝐱|𝜽) = ∏N

n=1 π(xn|𝜽)
and use a prior distribution with density function π(𝜽) to characterize our belief about the value of the
P-dimensional parameter vector 𝜽 a priori. The target of Bayesian inference is the posterior distribution
of 𝜽 conditioned on 𝐱

π(𝜽|𝐱) = π(𝐱|𝜽)π(𝜽) /∫ π(𝐱|𝜽)π(𝜽) d𝜽 (1)

The denominator’s multidimensional integral quickly becomes impractical as P grows large, so we choose
to use the MetropolisHastings (M–H) algorithm to generate a Markov chain with stationary distribution
π(𝜽|𝐱)[13, 19, 20]. We begin at an arbitrary position𝜽(0) and, for each iteration s = 0, … , S, randomly generate
the proposal state 𝜽∗ from the transition distribution with density q(𝜽∗|𝜽(s)). We then accept proposal
state 𝜽∗ with probability

a = min
(

1,
π(𝜽∗|𝐱)q(𝜽(s)|𝜽∗)
π(𝜽(s)|𝐱)q(𝜽∗|𝜽(s))

)
(2)

The ratio on the right no longer depends on the denominator in Equation (1), but one must still compute
the likelihood and its N terms π(xn|𝜽∗).

It is for this reason that likelihood evaluations are often the computational bottleneck for Bayesian
inference. In the best case, these evaluations are (N), but there are many situations in which they scale
(N2)[21, 22] or worse. Indeed, when P is large, it is often advantageous to use more advanced MCMC
algorithms that use the gradient of the log-posterior to generate better proposals. In this situation, the
log-likelihood gradient may also become a computational bottleneck[21].
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2.2 Big P

One of the simplest models for big P problems is ridge regression[23], but computing can become expen-
sive even in this classical setting. Ridge regression estimates the coefficient 𝜽 by minimizing the distance
between the observed and predicted values 𝐲 and 𝐗𝜽 along with a weighted square norm of 𝜽:

�̂� = argmin{||𝐲 − 𝐗𝜽||2 + ||𝚽1∕2𝜽||2} = (𝐗⊺𝐗 +𝚽)−1𝐗⊺𝐲

For illustrative purposes, we consider the following direct method for computing �̂�.4 We can first multi-
ply the N × P design matrix 𝐗 by its transpose at the cost of (N2P) and subsequently invert the P × P
matrix (𝐗⊺𝐗 +𝚽) at the cost of (P3). The total (N2P + P3) complexity shows that (i) a large number of
parameters is often sufficient for making even the simplest of tasks infeasible and (ii) a moderate number of
parameters can render a task impractical when there are a large number of observations. These two insights
extend to more complicated models: the same complexity analysis holds for the fitting of generalized linear
models (GLMs) as described in McCullagh and Nelder[12].

In the context of Bayesian inference, the length P of the vector 𝜽 dictates the dimension of the MCMC
state space. For the M-H algorithm (Section 2.1) with P-dimensional Gaussian target and proposal,
Gelman et al.[25] show that the proposal distribution’s covariance should be scaled by a factor inversely pro-
portional to P. Hence, as the dimension of the state space grows, it behooves one to propose states 𝜽∗ that
are closer to the current state of the Markov chain, and one must greatly increase the number S of MCMC
iterations. At the same time, an increasing P often slows down rate-limiting likelihood calculations (Section
2.1). Taken together, one must generate many more, much slower MCMC iterations. The wide applicability
of latent variable models[26] (Sections 3.1 and 3.2) for which each observation has its own parameter set
(e.g., P ∝ N) means M-H simply does not work for a huge class of models popular with practitioners.

For these reasons, Hamiltonian Monte Carlo (HMC)[27] has become a popular algorithm for fitting
Bayesian models with large numbers of parameters. Like M-H, HMC uses an accept step (Equation 2).
Unlike M-H, HMC takes advantage of additional information about the target distribution in the form of
the log-posterior gradient. HMC works by doubling the state space dimension with an auxiliary Gaussian
“momentum” variable 𝐩 ∼ NormalP(𝟎,𝐌) independent to the “position” variable 𝜽. The constructed
Hamiltonian system has energy function given by the negative logarithm of the joint distribution

H(𝜽,𝐩) ∝ − log(π(𝜽|𝐗) × exp(−𝐩T𝐌−1𝐩∕2)) ∝ − log π(𝜽|𝐗) + 𝐩T𝐌−1𝐩∕2

and we produce proposals by simulating the system according to Hamilton’s equations

�̇� = 𝜕

𝜕𝐩
H(𝜽,𝐩) = M−1𝐩∕2

�̇� = − 𝜕

𝜕𝜽
H(𝜽,𝐩) = ∇ log π(𝜽|𝐗)

Thus, the momentum of the system moves in the direction of the steepest ascent for the log-posterior, form-
ing an analogy with first-order optimization. The cost is repeated gradient evaluations that may comprise a
new computational bottleneck, but the result is effective MCMC for tens of thousands of parameters[21, 28].
The success of HMC has inspired research into other methods leveraging gradient information to generate
better MCMC proposals when P is large[29].

2.3 Big M

Global optimization, or the problem of finding the minimum of a function with arbitrarily many local min-
ima, is NP-complete in general[30], meaning – in layman’s terms – it is impossibly hard. In the absence
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of a tractable theory, by which one might prove one’s global optimization procedure works, brute-force
grid and random searches and heuristic methods such as particle swarm optimization[31] and genetic
algorithms[32] have been popular. Due to the overwhelming difficulty of global optimization, a large portion
of the optimization literature has focused on the particularly well-behaved class of convex functions[33, 34],
which do not admit multiple local minima. Since Fisher introduced his “maximum likelihood” in 1922[35],
statisticians have thought in terms of maximization, but convexity theory still applies by a trivial negation
of the objective function. Nonetheless, most statisticians safely ignored concavity during the twentieth
century: exponential family log-likelihoods are log-concave, so Newton–Raphson and Fisher scoring are
guaranteed optimality in the context of GLMs[12, 34].

Nearing the end of the twentieth century, multimodality and nonconvexity became more important
for statisticians considering high-dimensional regression, that is, regression with many covariates (big P).
Here, for purposes of interpretability and variance reduction, one would like to induce sparsity on the
weights vector �̂� by performing best subset selection[36, 37]:

�̂� = argmin
𝜽∈ℝP

||𝐲 − 𝐗𝜽||22 subject to ||𝜽||0 ≤ k (3)

where 0 < k ≤ P, and || ⋅ ||0 denotes the 𝓁0-norm, that is, the number of nonzero elements. Because best
subset selection requires an immensely difficult nonconvex optimization, Tibshirani[38] famously replaces
the 𝓁0-norm with the 𝓁1-norm, thereby providing sparsity, while nonetheless maintaining convexity.

Historically, Bayesians have paid much less attention to convexity than have optimization researchers.
This is most likely because the basic theory[13] of MCMC does not require such restrictions: even if a
target distribution has one million modes, the well-constructed Markov chain explores them all in the
limit. Despite these theoretical guarantees, a small literature has developed to tackle multimodal Bayesian
inference[39–42] because multimodal target distributions do present a challenge in practice. In analogy with
Equation (3), Bayesians seek to induce sparsity by specifiying priors such as the spike-and-slab[43–45], for
example,

𝐲 ∼ NormalN (𝐗𝚪𝜽, 𝜎2𝐈N ) for [𝚪]pp′ =

{
𝛾p ∼ Bernoulli (π) p = p′

0 p ≠ p′ and π ∈ (0, 1)

As with the best subset selection objective function, the spike-and-slab target distribution becomes heavily
multimodal as P grows and the support of 𝚪’s discrete distribution grows to 2P potential configurations.

In the following section, we present an alternative Bayesian sparse regression approach that mitigates
the combinatorial problem along with a state-of-the-art computational technique that scales well both in N
and P.

3 Model-Specific Advances

These challenges will remain throughout the twenty-first century, but it is possible to make significant
advances for specific statistical tasks or classes of models. Section 3.1 considers Bayesian sparse regression
based on continuous shrinkage priors, designed to alleviate the heavy multimodality (big M) of the more
traditional spike-and-slab approach. This model presents a major computational challenge as N and P
grow, but a recent computational advance makes the posterior inference feasible for many modern large-
scale applications.

And because of the rise of data science, there are increasing opportunities for computational statistics
to grow by enabling and extending statistical inference for scientific applications previously outside of
mainstream statistics. Here, the science may dictate the development of structured models with complexity
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possibly growing in N and P. Section 3.2 presents a method for fast phylogenetic inference, where the
primary structure of interest is a “family tree” describing a biological evolutionary history.

3.1 Bayesian Sparse Regression in the Age of Big N and Big P

With the goal of identifying a small subset of relevant features among a large number of potential can-
didates, sparse regression techniques have long featured in a range of statistical and data science
applications[46]. Traditionally, such techniques were commonly applied in the “N ≤ P” setting, and cor-
respondingly computational algorithms focused on this situation[47], especially within the Bayesian
literature[48].

Due to a growing number of initiatives for large-scale data collections and new types of scientific
inquiries made possible by emerging technologies, however, increasingly common are datasets that are
“big N” and “big P” at the same time. For example, modern observational studies using health-care
databases routinely involve N ≈ 105 ∼ 106 patients and P ≈ 104 ∼ 105 clinical covariates[49]. The UK
Biobank provides brain imaging data on N = 100 000 patients, with P = 100 ∼ 200 000, depending on the
scientific question of interests[50]. Single-cell RNA sequencing can generate datasets with N (the number
of cells) in millions and P (the number of genes) in tens of thousands, with the trend indicating further
growths in data size to come[51].

3.1.1 Continuous shrinkage: alleviating big M

Bayesian sparse regression, despite its desirable theoretical properties and flexibility to serve as a building
block for richer statistical models, has always been relatively computationally intensive even before the
advent of “big N and big P” data[45, 52, 53]. A major source of its computational burden is severe posterior
multimodality (big M) induced by the discrete binary nature of spike-and-slab priors (Section 2.3).
The class of global–local continuous shrinkage priors is a more recent alternative to shrink 𝜃ps in a more
continuous manner, thereby alleviating (if not eliminating) the multimodality issue[54, 55]. This class of
prior is represented as a scale mixture of Gaussians:

𝜃p | 𝜆p, 𝜏 ∼ NormalN (0, 𝜏2𝜆2
p), 𝜆p ∼ 𝜋local(⋅), 𝜏 ∼ 𝜋global(⋅)

The idea is that the global scale parameter 𝜏 ≤ 1 would shrink most 𝜃ps toward zero, while the local scale
𝜆ps, with its heavy-tailed prior 𝜋local(⋅), allow a small number of 𝜏𝜆p and hence 𝜃ps to be estimated away
from zero. While motivated by two different conceptual frameworks, the spike-and-slab can be viewed as
a subset of global–local priors in which 𝜋local(⋅) is chosen as a mixture of delta masses placed at 𝜆p = 0
and 𝜆p = 𝜎∕𝜏 . Continuous shrinkage mitigates the multimodality of spike-and-slab by smoothly bridging
small and large values of 𝜆p.

On the other hand, the use of continuous shrinkage priors does not address the increasing com-
putational burden from growing N and P in modern applications. Sparse regression posteriors under
global–local priors are amenable to an effective Gibbs sampler, a popular class of MCMC we describe
further in Section 4.1. Under the linear and logistic models, the computational bottleneck of this Gibbs
sampler stems from the need for repeated updates of 𝜽 from its conditional distribution

𝜽 | 𝜏,𝝀,𝛀, 𝐲,𝐗 ∼ NormalP(𝚽−1𝐗⊺𝛀𝐲,𝚽−1)) for 𝚽 = 𝐗⊺𝛀𝐗 + 𝜏−2𝚲−2 (4)

where 𝛀 is an additional parameter of diagonal matrix and 𝚲 = diag(𝝀).5 Sampling from this high-
dimensional Gaussian distribution requires (NP2 + P3) operations with the standard approach[58]:
(NP2) for computing the term 𝐗⊺𝛀𝐗 and (P3) for Cholesky factorization of 𝚽. While an alternative
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approach by Bhattacharya et al.[48] provides the complexity of (N2P + N3), the computational cost
remains problematic in the big N and big P regime at (min{N2P,NP2}) after choosing the faster of
the two.

3.1.2 Conjugate gradient sampler for structured high-dimensional Gaussians

The conjugate gradient (CG) sampler of Nishimura and Suchard[57] combined with their prior-
preconditioning technique overcomes this seemingly inevitable (min{N2P,NP2}) growth of the
computational cost. Their algorithm is based on a novel application of the CG method[59, 60], which
belongs to a family of iterative methods in numerical linear algebra. Despite its first appearance in 1952,
CG received little attention for the next few decades, only making its way into major software packages
such as MATLAB in the 1990s[61]. With its ability to solve a large and structured linear system 𝚽𝜽 = b via a
small number of matrix–vector multiplications v → 𝚽v without ever explicitly inverting 𝚽, however, CG
has since emerged as an essential and prototypical algorithm for modern scientific computing[62, 63].

Despite its earlier rise to prominence in other fields, CG has not found practical applications in Bayesian
computation until rather recently[57, 64]. We can offer at least two explanations for this. First, being an
algorithm for solving a deterministic linear system, it is not obvious how CG would be relevant to Monte
Carlo simulation, such as sampling from NormalP(𝝁,𝚽−1); ostensively, such a task requires computing a
“square root” L of the precision matrix so that Var(L−1z) = L−1L−⊺ = 𝚽−1 for z ∼ NormalP(𝟎, IP). Secondly,
unlike direct linear algebra methods, iterative methods such as CG have a variable computational cost
that depends critically on the user’s choice of a preconditioner and thus cannot be used as a “black-box”
algorithm.6 In particular, this novel application of CG to Bayesian computation is a reminder that other
powerful ideas in other computationally intensive fields may remain untapped by the statistical computing
community; knowledge transfers will likely be facilitated by having more researchers working at intersec-
tions of different fields.

Nishimura and Suchard[57] turns CG into a viable algorithm for Bayesian sparse regression problems
by realizing that (i) we can obtain a Gaussian vector b ∼ NormalP(𝐗⊺𝛀𝐲,𝚽) by first generating
z ∼ NormalP(𝟎, IP) and 𝜻 ∼ NormalN (𝟎, IN ) and then setting b = 𝐗⊺𝛀𝐲 + 𝐗⊺𝛀1∕2𝜻 + 𝜏−1𝚲−1z and
(ii) subsequently solving 𝚽𝜽 = b yields a sample 𝜽 from the distribution (4). The authors then observe
that the mechanism through which a shrinkage prior induces sparsity of 𝜃ps also induces a tight
clustering of eigenvalues in the prior-preconditioned matrix 𝜏2𝚲𝚽𝚲. This fact makes it possible for
prior-preconditioned CG to solve the system 𝚽𝜽 = b in K matrix–vector operations of form v → 𝚽v,
where K roughly represents the number of significant 𝜃ps that are distinguishable from zeros under the
posterior. For 𝚽 having a structure as in (4), 𝚽v can be computed via matrix–vector multiplications of
form v → 𝐗v and w → 𝐗⊺w, so each v → 𝚽v operation requires a fraction of the computational cost of
directly computing 𝚽 and then factorizing it.

Prior-preconditioned CG demonstrates an order of magnitude speedup in posterior computation when
applied to a comparative effectiveness study of atrial fibrillation treatment involving N = 72 489
patients and P = 22 175 covariates[57]. Though unexplored in their work, the algorithm’s heavy use of
matrix–vector multiplications provides avenues for further acceleration. Technically, the algorithm’s
complexity may be characterized as (NPK), for the K matrix–vector multiplications by 𝐗 and 𝐗⊺,
but the theoretical complexity is only a part of the story. Matrix–vector multiplications are amenable
to a variety of hardware optimizations, which in practice can make orders of magnitude difference in
speed (Section 4.2). In fact, given how arduous manually optimizing computational bottlenecks can
be, designing algorithms so as to take advantage of common routines (as those in Level 3 BLAS) and
their ready-optimized implementations has been recognized as an effective principle in algorithm
design[65].
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3.2 Phylogenetic Reconstruction

While big N and big P regression adapts a classical statistical task to contemporary needs, the twenty-first
century is witnessing the application of computational statistics to the entirety of applied science. One
such example is the tracking and reconstruction of deadly global viral pandemics. Molecular phylogenetics
has become an essential analytical tool for understanding the complex patterns in which rapidly evolving
pathogens propagate throughout and between countries, owing to the complex travel and transportation
patterns evinced by modern economies[66], along with other factors such as increased global population
and urbanization[67]. The advance in sequencing technology is generating pathogen genomic data at an
ever-increasing pace, with a trend to real time that requires the development of computational statistical
methods that are able to process the sequences in a timely manner and produce interpretable results to
inform national/global public health organizations.

The previous three Core Challenges are usually interwound such that the increase in the sample size (big
N) and the number of traits (big P) for each sample usually happen simultaneously and lead to increased
heterogeneity that requires more complex models (big M). For example, recent studies in viral evolution
have seen a continuing increase in the sample size that the West Nile virus, Dengue, HIV, and Ebola virus
studies involve 104, 352, 465, and 1610 sequences[68–71], and the GISAID database has collected 92 000
COVID-19 genomic sequences by the end of August 2020[72].

To accommodate the increasing size and heterogeneity in the data and be able to apply the aforemen-
tioned efficient gradient-based algorithms, Ji et al.[73] propose a linear-time algorithm for calculating an
O(N)-dimensional gradient on a tree w.r.t. the sequence evolution. The linear-time gradient algorithm
calculates each branch-specific derivative through a preorder traversal that complements the postorder
traversal from the likelihood calculation of the observed sequence data at the tip of the phylogeny by
marginalizing over all possible hidden states on the internal nodes. The pre- and postorder traversals com-
plete the Baum’s forward–backward algorithm in a phylogenetic framework[74]. The authors then apply
the gradient algorithm with HMC (Section 2.2) samplers to learn the branch-specific viral evolutionary
rates.

Thanks to these advanced computational methods, one can employ more flexible models that lend
themselves to more realistic reconstructions and uncertainty quantification. Following a random-effects
relaxed clock model, they model the evolutionary rate rp of branch p on a phylogeny as the product of a
global treewise mean parameter 𝜇 and a branch-specific random effect 𝜖p. They model the random-effect
𝜖ps as independent and identically distributed from a lognormal distribution such that 𝜖p has mean
1 and variance 𝜓2 under a hierarchical model where 𝜓 is the scale parameter. To accommodate the
difference in scales of the variability in the parameter space for the HMC sampler, the authors adopt
preconditioning with adaptive mass matrix informed by the diagonal entries of the Hessian matrix.
More precisely, the nonzero diagonal elements of the mass matrix truncate the values from the first s

HMC iterations of H (s)
pp = 1⌊s∕k⌋∑s∶s∕k ∈ ℤ+

[
− 𝜕2

𝜕2𝜃p
log π(𝜽)

||||𝜽=𝜽(s)
]
≈ 𝔼π(𝜃)

[
− 𝜕2

𝜕2𝜃i
log π(𝜽)

]
so that the matrix

remains positive-definite and numerically stable. They estimate the treewise (fixed-effect) mean rate 𝜇

with posterior mean 4.75 (95% Bayesian credible interval: 4.05, 5.33) ×10−4 substitutions per site per
year with rate variability characterized by scale parameter with posterior mean 𝜓 = 1.26[1.06, 1.45] for
serotype 3 of Dengue virus with a sample size of 352[69]. Figure 1 illustrates the estimated maximum clade
credible evolutionary tree of the Dengue virus dataset.

The authors report relative speedup in terms of the effective sample size per second (ESS/s) of the HMC
samplers compared to a univariate transition kernel. The “vanilla” HMC sampler with an identity mass
matrix gains 2.2× speedup for the minimum ESS/s and 2.5× speedup for the median ESS/s, whereas the
“preconditioned” HMC sampler gains 16.4× and 7.4× speedups, respectively. Critically, the authors make
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Figure 1. A nontraditional and critically important application in computational statistics is the recon-
struction of evolutionary histories in the form of phylogenetic trees. Here is a maximum clade credible
tree of the Dengue virus example. The dataset consists of 352 sequences of the serotype 3 of the Dengue
virus. Branches are color coded by the posterior means of the branch-specific evolutionary rates according
to the color bar on the top left. The concentric circles indicate the timescale with the year numbers. The
outer ring indicates the geographic locations of the samples by the color code on the bottom left. ‘I’ and
‘II’ indicate the two Brazilian lineages as in the original study.

these performance gains available to scientists everywhere through the popular, open-source software
package for viral phylogenetic inference Bayesian evolutionary analysis by sampling trees (BEAST)[75]. In
Section 4.1, we discuss how software package such as BEAST addresses Core Challenge 4, the creation of
fast, flexible, and friendly statistical algo-ware.

4 Core Challenges 4 and 5

Section 3 provides examples of how computational statisticians might address Core Challenges 1–3 (big
N , big P, and big M) for individual models. Such advances in computational methods must be accompanied
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by easy-to-use software to make them accessible to end users. As Gentle et al.[76] put it, “While referees
and editors of scholarly journals determine what statistical theory and methods are published, the devel-
opers of the major statistical software packages determine what statistical methods are used.” We would
like statistical software to be widely applicable yet computationally efficient at the same time. Trade-offs
invariably arise between these two desiderata, but one should nonetheless strive to design algorithms that
are general enough to solve an important class of problems and as efficiently as possible in doing so.

Section 4.1 presents Core Challenge 4, achieving “algo-ware” (a neologism suggesting an equal emphasis
on the statistical algorithm and its implementation) that is sufficiently efficient, broad, and user-friendly to
empower everyday statisticians and data scientists. Core Challenge 5 (Section 4.2) explores the mapping
of these algorithms to computational hardware for optimal performance. Hardware-optimized implemen-
tations often exploit model-specific structures, but good, general-purpose software should also optimize
common routines.

4.1 Fast, Flexible, and Friendly Statistical Algo-Ware

To accommodate the greatest range of models while remaining simple enough to encourage easy imple-
mentation, inference methods should rely solely on the quantities that can be computed algorithmically for
any given model. The log-likelihood (or log-density in the Bayesian setting) is one such quantity, and one
can employ the computational graph framework[77, 78] to evaluate conditional log-likelihoods for any subset
of model parameters as well as their gradients via backpropagation[79]. Beyond being efficient in terms of
the first three Core Challenges, an algorithm should demonstrate robust performance on a reasonably wide
range of problems without extensive tuning if it is to lend itself to successful software deployment.

HMC (Section 2.2) is a prominent example of a general-purpose algorithm for Bayesian inference, only
requiring the log-density and its gradient. The generic nature of HMC has opened up possibilities for
complex Bayesian modeling as early as Neal[80], but its performance is highly sensitive to model parame-
terization and its three tuning parameters, commonly referred to as trajectory length, step size, and mass
matrix[27]. Tuning issues constitute a major obstacle to the wider adoption of the algorithm, as evidenced
by the development history of the popular HMC-based probabilistic programming software Stan[81], which
employs the No-U-Turn sampler (NUTS) of Hoffman and Gelman[82] to make HMC user-friendly by obvi-
ating the need to tune its trajectory length. Bayesian software packages such as Stan empirically adapt the
remaining step size and mass matrix[83]; this approach helps make the use of HMC automatic though is
not without issues[84] and comes at the cost of significant computational overhead.

Although HMC is a powerful algorithm that has played a critical role in the emergence of general-
purpose Bayesian inference software, the challenges involved in its practical deployment also demonstrate
how an algorithm – no matter how versatile and efficient at its best – is not necessarily useful unless it
can be made easy for practitioners to use. It is also unlikely that one algorithm works well in all situations.
In fact, there are many distributions on which HMC performs poorly[83, 85, 86]. Additionally, HMC is inca-
pable of handling discrete distributions in a fully general manner despite the progresses made in extending
HMC to such situations[87, 88].

But broader applicability comes with its own challenges. Among sampling-based approaches to Bayesian
inference, the Gibbs sampler[89, 90] is, arguably, the most versatile of the MCMC methods. The algorithm
simplifies the task of dealing with a complex multidimensional posterior distribution by factorizing the
posterior into simpler conditional distributions for blocks of parameters and iteratively updating param-
eters from their conditionals. Unfortunately, the efficiency of an individual Gibbs sampler depends on its
specific factorization and the degree of dependence between its blocks of parameters. Without a careful
design or in the absence of effective factorization, therefore, Gibbs samplers’ performance may lag behind
alternatives such as HMC[91].
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On the other hand, Gibbs samplers often require little tuning and can take advantage of highly optimized
algorithms for each conditional update, as done in the examples of Section 3. A clear advantage of the Gibbs
sampler is that it tends to make software implementation quite modular; for example, each conditional
update can be replaced with the latest state-of-the-art samplers as they appear[92], and adding a new feature
may amount to no more than adding a single conditional update[75]. In this way, an algorithm may not
work in a completely model-agnostic manner but with a broad enough scope can serve as a valuable recipe
or meta-algorithm for building model-specific algorithms and software. The same is true for optimization
methods. Even though its “E”-step requires a derivation (by hand) for each new model, the EM algorithm[93]

enables maximum-likelihood estimation for a wide range of models. Similarly, variational inference (VI)
for approximate Bayes requires manual derivations but provides a general framework to turn posterior
computation into an optimization problem[94]. As meta-algorithms, both EM and VI expand their breadth
of use by replacing analytical derivations with Monte Carlo estimators but suffer losses in statistical and
computational efficiency[95, 96]. Indeed, such trade-offs will continue to haunt the creation of fast, flexible,
and friendly statistical algo-ware well into the twenty-first century.

4.2 Hardware-Optimized Inference

But successful statistical inference software must also interact with computational hardware in an opti-
mal manner. Growing datasets require the computational statistician to give more and more thought to
how the computer implements any statistical algorithm. To effectively leverage computational resources,
the statistician must (i) identify the routine’s computational bottleneck (Section 2.1) and (ii) algorithmi-
cally map this rate-limiting step to available hardware such as a multicore or vectorized CPU, a many-core
GPU, or – in the future – a quantum computer. Sometimes, the first step is clear theoretically: a naive
implementation of the high-dimensional regression example of Section 3.1 requires an order (N2P)
matrix multiplication followed by an order (P3) Cholesky decomposition. Other times, one can use an
instruction-level program profiler, such as INTEL VTUNE (Windows, Linux) or INSTRUMENTS (OSX), to iden-
tify a performance bottleneck. Once the bottleneck is identified, one must choose between computational
resources, or some combination thereof, based on relative strengths and weaknesses as well as natural
parallelism of the target task.

Multicore CPU processing is effective for parallel completion of multiple, mostly independent tasks that
do not require intercommunication. One might generate 2 to, say, 72 independent Markov chains on a
desktop computer or shared cluster. A positive aspect is that the tasks do not have to involve the same
instruction sets at all; a negative is latency, that is, that the slowest process dictates overall runtime. It is
possible to further speed up CPU computing with single instruction, multiple data (SIMD) or vector pro-
cessing. A small number of vector processing units (VPUs) in each CPU core can carry out a single set of
instructions on data stored within an extended-length register. Intel’s streaming SIMD extensions (SSE),
advance vector extensions (AVX), and AVX-512 allow operations on 128-, 256-, and 512-bit registers. In
the context of 64-bit double precision, theoretical speedups for SSE, AVX, and AVX-512 are two-, four-,
and eightfold. For example, if a computational bottleneck exists within a for-loop, one can unroll the loop
and perform operations on, say, four consecutive loop bodies at once using AVX[21, 22]. Conveniently, lan-
guages such as OPENMP[97] make SIMD loop optimization transparent to the user[98]. Importantly, SIMD
and multicore optimization play well together, providing multiplicative speedups.

While a CPU may have tens of cores, GPUs accomplish fine-grained parallelization with thousands of
cores that apply a single instruction set to distinct data within smaller workgroups of tens or hundreds of
cores. Quick communication and shared cache memory within each workgroup balance full parallelization
across groups, and dynamic on- and off-loading of the many tasks hide the latency that is so problematic
for multicore computing. Originally designed for efficiently parallelized matrix math calculations arising

Wiley StatsRef: Statistics Reference Online, © 2014–2021 John Wiley & Sons, Ltd.
This article is © 2021 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08324

11



Computational Statistics and Data Science in the Twenty-first Century

from image rendering and transformation, GPUs easily speed up tasks that are tensor multiplication inten-
sive such as deep learning[99] but general-purpose GPU applications abound. Holbrook et al.[21] provide a
larger review of parallel computing within computational statistics. The same paper reports a GPU pro-
viding 200-fold speedups over single-core processing and 10-fold speedups over 12-core AVX processing
for likelihood and gradient calculations while sampling from a Bayesian multidimensional scaling poste-
rior using HMC at scale. Holbrook et al.[22] report similar speedups for inference based on spatiotemporal
Hawkes processes. Neither application involves matrix or tensor manipulations.

A quantum computer acts on complex data vectors of magnitude 1 called qubits with gates that are
mathematically equivalent to unitary operators[100]. Assuming that engineers overcome the tremendous
difficulties involved in building a practical quantum computer (where practicality entails simultaneous use
of many quantum gates with little additional noise), twenty-first century statisticians might have access
to quadratic or even exponential speedups for extremely specific statistical tasks. We are particularly
interested in the following four quantum algorithms: quantum search[101], or finding a single 1 amid a
collection of 0s, only requires (√N) queries, delivering a quadratic speedup over classical search; quan-
tum counting[102], or finding the number of 1s amid a collection of 0s, only requires (√N∕M) (where M
is the number of 1s) and could be useful for generating p-values within Monte Carlo simulation from a null
distribution (Section 2.1); to obtain the gradient of a function (e.g., the log-likelihood for Fisher scoring
or HMC) with a quantum computer, one only needs to evaluate the function once[103] as opposed to (P)
times for numerical differentiation, and there is nothing stopping the statistician from using, say, a GPU for
this single function call; and finally, the HHL algorithm[104] obtains the scalar value 𝐪T𝐌𝐪 for the P-vector
𝐪 satisfying 𝐀𝐪 = 𝐛 and 𝐌 and P × P matrix in time (log(P𝜅2)), delivering an exponential speedup over
classical methods. Technical caveats exist[105], but HHL may find use within high-dimensional hypothesis
testing (big P). Under the null hypothesis, one can rewrite the score test statistic

𝐮T (�̂�0) −1(�̂�0) 𝐮(�̂�0) as 𝐮T (�̂�0) −1(�̂�0) (�̂�0) −1(�̂�0) 𝐮(�̂�0)

for (�̂�0) and 𝐮(�̂�0), the Fisher information and log-likelihood gradient evaluated at the maximum-
likelihood solution under the null hypothesis. Letting 𝐀 = (�̂�0) = 𝐌 and 𝐛 = 𝐮(�̂�0), one may write
the test statistic as 𝐪T𝐌𝐪 and obtain it in time logarithmic in P. When the model design matrix 𝐗 is
sufficiently sparse – a common enough occurrence in large-scale regression – to render (�̂�0) itself
sparse, the last criterion for the application of the HHL algorithm is met.

5 Rise of Data Science

Core Challenges 4 and 5 – fast, flexible, and user-friendly algo-ware and hardware-optimized infer-
ence – embody an increasing emphasis on application and implementation in the age of data science.
Previously undervalued contributions in statistical computing, for example, hardware utilization, database
methodology, computer graphics, statistical software engineering, and the human–computer interface[76],
are slowly taking on greater importance within the (rather conservative) discipline of statistics. There is
perhaps no better illustration of this trend than Dr. Hadley Wickham’s winning the prestigious COPSS
Presidents’ Award for 2019

[for] influential work in statistical computing, visualization, graphics, and data analysis; for
developing and implementing an impressively comprehensive computational infrastructure for
data analysis through R software; for making statistical thinking and computing accessible to
large audience; and for enhancing an appreciation for the important role of statistics among data
scientists[106].
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This success is all the more impressive because Presidents’ Awardees have historically been contribu-
tors to statistical theory and methodology, not Dr. Wickham’s scientific software development for data
manipulation[107–109] and visualization[110, 111].

All of this might lead one to ask: does the success of data science portend the declining significance of
computational statistics and its Core Challenges? Not at all! At the most basic level, data science’s emphasis
on application and implementation underscores the need for computational thinking in statistics. More-
over, the scientific breadth of data science brings new applications and models to the attention of statisti-
cians, and these models may require or inspire novel algorithmic techniques. Indeed, we look forward to a
golden age of computational statistics, in which statisticians labor within the intersections of mathematics,
parallel computing, database methodologies, and software engineering with impact on the entirety of the
applied sciences. After all, significant progress toward conquering the Core Challenges of computational
statistics requires that we use every tool at our collective disposal.
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End Notes

1. Statistical inference is an umbrella term for hypothesis testing, point estimation, and the generation of (confidence
or credible) intervals for population functionals (mean, median, correlations, etc.) or model parameters.

2. We present the problem of phylogenetic reconstruction in Section 3.2 as one such example arising from the field of
molecular epidemiology.

3. The use of “N” and “P” to denote observation and parameter count is common. We have taken liberties in coining
the use of “M” to denote mode count.

4. A more numerically stable approach has the same complexity[24].
5. The matrix parameter𝛀 coincides with𝛀 = 𝜎−2𝐈N for linear regression and𝛀 = diag(𝝎) for auxiliary Pólya-Gamma

parameter 𝝎 for logistic regression[56, 57].
6. See Nishimura and Suchard[57] and references therein for the role and design of a preconditioner.
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