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We model longitudinal macular thickness measurements to monitor the
course of glaucoma and prevent vision loss due to disease progression. The
macular thickness varies over a 6 × 6 grid of locations on the retina, with ad-
ditional variability arising from the imaging process at each visit. Currently,
ophthalmologists estimate slopes using repeated simple linear regression for
each subject and location. To estimate slopes more precisely, we develop a
novel Bayesian hierarchical model for multiple subjects with spatially vary-
ing population-level and subject-level coefficients, borrowing information
over subjects and measurement locations. We augment the model with visit
effects to account for observed spatially correlated visit-specific errors. We
model spatially varying: (a) intercepts, (b) slopes, and (c) log-residual stan-
dard deviations (SD) with multivariate Gaussian process priors with Matérn
cross-covariance functions. Each marginal process assumes an exponential
kernel with its own SD and spatial correlation matrix. We develop our models
for and apply them to data from the Advanced Glaucoma Progression Study.
We show that including visit effects in the model reduces error in predicting
future thickness measurements and greatly improves model fit.

1. Introduction. Glaucoma damages the optic nerve and is the second leading cause of
blindness worldwide (Kingman (2004)). As there is no cure, timely detection of disease pro-
gression is imperative to identify eyes at high risk of or demonstrating early progression so
that timely treatment can be provided and further visual loss prevented. Ophthalmologists as-
sess glaucomatous progression by monitoring functional changes in visual fields or structural
changes in the retina over time. Visual field (VF) measurements assess functional changes
by measuring how well eyes are able to detect light. Repeatedly measuring the thickness of
retinal layers, such as macular ganglion cell complex (GCC), with optical coherence tomog-
raphy (OCT) allows ophthalmologists to evaluate central retinal (macular) structural change
over time. Both VF and OCT obtain data from multiple locations across the retina. In cur-
rent practice, clinicians detect progression by modeling functional or structural changes over
time using simple linear regression (SLR) for each subject-location combination (Gardiner
and Crabb (2002), Nouri-Mahdavi et al. (2007), Tatham and Medeiros (2017), Thompson
et al. (2020)). SLR does not accommodate the hierarchical structure that patients are mem-
bers of a population and ignores the spatial arrangement of the data. For analyzing VF data
at individual locations, Montesano et al. (2021) introduce a hierarchical model accounting
for location and cluster levels fit to data from a single eye, Betz-Stablein et al. (2013) and
Berchuk, Mwanza and Warren (2019) present models accounting for spatial correlation fit to
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data from a single eye, and Bryan et al. (2017) describe a two-stage approach to fit a hierar-
chical model taking subject, eye, hemifield (one half of the VF), and location into account.
While these methods exist for VF data, they cannot be directly applied to structural macular
data as the measurement processes are markedly different. Key features of VF data that differ
from structural data include censoring, heteroskedasticity, and a different underlying spatial
structure.

We analyze data from the Advanced Glaucoma Progression Study (AGPS), a cohort of
eyes with moderate to severe glaucoma. To monitor glaucoma progression, we model lon-
gitudinal macular GCC thickness measurements over a square 6 × 6 grid of 36 superpix-
els (roughly a 20◦ × 20◦ area) for all subjects. For a single subject, the intercepts, slopes,
and residual standard deviations (SD) vary spatially across superpixel locations. Moham-
madzadeh et al. (2021) model GCC data from each superpixel separately and compare differ-
ent Bayesian hierarchical models, preferring a model with random intercepts, random slopes,
and random residual SDs. Our desired model needs to account for both the hierarchical struc-
ture of the data and the spatial correlations in both the population- and subject-level inter-
cepts, slopes, and residual SDs and in the residuals. The parameters at the population level
summarize information from the whole cohort at each superpixel location. Additional dif-
ficulties in modeling GCC data arise from the amount and sources of measurement error.
Thickness measurements are reliant on automated segmentation algorithms, which may in-
troduce spatially correlated errors unique to each imaging scan. We show that including visit
effects to account for visit-specific errors reduces error in predicting future thickness mea-
surements and greatly improves model fit. In this study we motivate and develop the spatially
varying hierarchical random effects with visit effects (SHREVE) model, a novel Bayesian
hierarchical model with spatially varying population- and subject-level coefficients and SDs,
accounting for spatial and within-subject correlation, between-subject variation, and spatially
correlated visit-specific errors.

For the AGPS data, we allow the intercepts, slopes, and residual SDs to vary over space.
Varying coefficient models are natural extensions to classical linear regression and exten-
sively used in imaging studies and the analysis of spatial data (Hastie and Tibshirani (1993),
Ge et al. (2014), Zhu, Fan and Kong (2014), Liu et al. (2019)), where regression coefficients
are allowed to vary smoothly as a function of one or more variables and, in our case, over spa-
tial locations. Regression coefficients may vary over space in a discrete fashion as with areal
units or in a continuous manner as with point-referenced data (Gelfand et al. (2010)). In the
context of imaging studies with grid data, a conditional autogressive (CAR) model (Gössl,
Auer and Fahrmeir (2001), Penny, Trujillo-Barreto and Friston (2005), Ge et al. (2014)) or a
Gaussian process (GP) model (Zhang et al. (2016a), Castruccio, Ombao and Genton (2018))
may be assumed for discrete or continuous spatial variation, respectively. In a GP model, co-
efficients from any finite set of locations has a multivariate normal distribution with a mean
function and valid covariance function specifying the expected value at each location and
covariance between coefficients at any two locations, respectively (Gelfand et al. (2010)).

Gelfand et al. (2003) first proposed the use of GPs to model spatially varying regression
coefficients and multivariate Gaussian processes (MGP) for multiple spatially varying regres-
sion coefficients in a hierarchical Bayesian framework. We can assign GP priors at different
levels in the hierarchy, which allows for flexible specification in hierarchical models (Gelfand
and Schliep (2016), Kim and Lee (2017)). In our case with three components, spatially vary-
ing intercepts, slopes, and residual SDs, we employ MGPs to model the correlations between
components within a location and across locations at both the subject and population level.
MGPs are specified with a multivariate mean function and cross-covariance function, defin-
ing the covariance between any two coefficients at any two locations (Banerjee, Carlin and
Gelfand (2015)). For simplicity and computational convenience, separable cross-covariance
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functions are often used where components share the same spatial correlation and compo-
nents within a location share a common covariance matrix, and the resulting covariance
matrix is the Kronecker product of a covariance matrix between components and a spatial
correlation matrix (Banerjee, Carlin and Gelfand (2015)). Assuming all components share
a common spatial correlation structure is likely inadequate in practice, as processes may be
very different from each other in nature. Instead, we propose a nonseparable cross-covariance
function to allow each process to have its own spatial correlation function.

Constructing valid cross-covariance models is a challenging task for nonseparable MGPs.
Genton and Kleiber (2015) review approaches to construct valid cross-covariance functions
for MGPs including the linear model of coregionalization (Wackernagel (2013), Schmidt
and Gelfand (2003)) and kernel and covariance convolution methods (Ver Hoef and Barry
(1998), Gaspari and Cohn (1999)). For univariate GPs the Matérn class of covariance models
is widely used, featuring a smoothness parameter that defines the level of mean square differ-
entiability and a lengthscale parameter that defines the rate of correlation decay (Guttorp and
Gneiting (2006)). Gneiting, Kleiber and Schlather (2010) and Apanasovich, Genton and Sun
(2012) introduce multivariate Matérn models and provide necessary and sufficient conditions
to allow the cross-covariance functions to have any number of components (processes) while
allowing for different smoothnesses and rates of correlation decay for each component. We
propose such a multivariate Matérn construction to model our spatially varying intercepts,
slopes, and residual SDs so that each component is allowed its own spatial correlation struc-
ture.

In Section 2 we describe the motivating data. In Section 3 we briefly review GPs and
develop the SHREVE model. In Section 4 we present simulation results, evaluating the ef-
fectiveness of the SHREVE model. In Section 5 we apply the SHREVE model to GCC data
and compare its performance to several nested models lacking visit effects or other model
components. We give a concluding discussion in Section 6.

2. Ganglion cell complex data. This section highlights data characteristics that moti-
vate model development. We provide details on the imaging procedure and study subjects.

2.1. Macular optical coherence tomography. Macular OCT has emerged as a standard
imaging modality to assess changes in retinal ganglion cells (RGCs) (Mohammadzadeh et al.
(2020a)). As glaucoma is characterized by progressive loss of RGCs, clinicians use macu-
lar OCT as a means to monitor changes in retinal thickness over time (Weinreb and Khaw
(2004)). Macular GCC thickness, measured in microns (μm), has been shown to be more
efficient for detecting structural loss regardless of glaucoma severity compared to measures
of other macular layers (Mohammadzadeh et al. (2022a)). Glaucomatous damage to the mac-
ular area, reflected in thinning of GCC, has been associated with VF loss (Mohammadzadeh
et al. (2020b)). Visual field loss occurs when part(s) of the peripheral vision is (are) lost.

2.2. Advanced glaucoma progression study. We analyze data from the AGPS (Moham-
madzadeh et al. (2021, 2022a,b)), an ongoing longitudinal study at the University of Cal-
ifornia, Los Angeles. The study adhered to the tenets of the Declaration of Helsinki and
conformed to Health Insurance Portability and Accountability Act policies. All patients pro-
vided written informed consent at the time of enrollment in the study. The data include GCC
thickness measurements from 111 eyes with at least four OCT scans and a minimum of ap-
proximately two years of observed follow-up time, up to 4.25 years from baseline. Subjects
returned approximately every six months for imaging using Spectralis OCT (Heidelberg En-
gineering, Heidelberg, Germany). This device acquires 30◦ × 25◦ volume scans centered on
the fovea, the center of the macula represented as a black dot in Figure 1 and as a white
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FIG. 1. Visualization of the 8 × 8 grid of superpixels and labels from the Spectralis posterior pole algorithm.
The inner 36 superpixels included in the analysis are shaded in gray and delineated with thicker lines. Superpixels
are shown in right eye orientation where rows 1-4 are located in the superior hemiretina and rows 5-8 are located
in the inferior hemiretina; the temple and nose are to the left and right, respectively. Superpixels labels are row
number 1-8, a dot, then column number 1-8. The black dot indicates the foveal center for visual orientation.
For ease of reference, we divide the 36 superpixels into quadrants (superior temporal, superior nasal, inferior
temporal, and inferior nasal) as shown on the right.

dot in subsequent figures (Mohammadzadeh et al. (2020a)). We used built-in software, the
Glaucoma Module Premium Edition, to automatically segment macular layers of interest.
GCC thickness is calculated by summing the thicknesses of the retinal nerve fiber layer, in-
ner plexiform layer, and ganglion cell layer. The posterior pole algorithm of the Spectralis
reports layer thickness averaged over pixels within a superpixel, with superpixels forming an
8 × 8 grid of locations, as shown in Figure 1. We display superpixels in right eye orientation
with superpixels labeled as row number 1–8, a dot, then column number 1–8. Superpixels
in rows 1–4 are located in the superior hemiretina, and rows 5–8 are located in the inferior
hemiretina; the temple and nose are to the left and right, respectively. For ease of reference,
we divide the 36 superpixels into quadrants (superior temporal, superior nasal, inferior tem-
poral, and inferior nasal) by anatomical region. Left eyes are mirror images of right eyes and
are flipped left-right for presentation and analysis. Because there is substantial measurement
noise in the outer ring of superpixels, rows 1 and 8 and columns 1 and 8 (Miraftabi et al.
(2016)), we analyze only the central 6 × 6 superpixels, as shown in Figure 1.

2.3. Data exploration. Let observation yijk be the GCC thickness measure in μm of
subject i = 1, . . . , n at visit j = 1, . . . , Ji , where Ji is the number of visits for subject
i, in superpixel k = 1, . . . ,K observed at time tij , with ti1 = 0 for all subjects. Location
sk = (rowk, columnk) denotes the spatial coordinates of superpixel k in two-dimensional
space. Initially, we remove any zero thickness values yijk = 0, which indicate errors of mea-
surement. We define a profile for subject i in superpixel k as the sequence of observations (tij ,
yijk) from visits j = 1, . . . , Ji and plot profiles of GCC thickness against time by connecting
consecutive observations with line segments. For all subjects and superpixels, we plotted data
in profile plots, which identified a number of outliers.

We remove outliers by identifying pairs of consecutive points that have very large dif-
ferences in GCC thicknesses between consecutive visits. For each pair of consecutive ob-
servations for each subject and superpixel, we calculate the consecutive-visit slope (yijk −
yi(j−1)k)/(tij − ti(j−1)). The mean consecutive-visit slope across all pairs of consecutive vis-
its for all subjects and superpixels is −0.5 μm/year. We center the consecutive-visit slopes
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FIG. 2. Profile plots of ganglion cell complex (GCC) thickness measurements for 10 subjects across 36 super-
pixels against follow-up time in years since baseline visit. Each color represents a different subject. These profiles
illustrate the variability in baseline GCC thickness across the 10 subjects within superpixels, with a range within
a superpixel of up to 84 μm. The average baseline thicknesses over subjects vary across superpixels, generally
increasing from the temporal to nasal regions (left to right).

by the mean and take the absolute value to get absolute consecutive-visit centered-slopes
|((yijk − yi(j−1)k)/(tij − ti(j−1))) + 0.5|. We flag pairs of observations (yi(j−1)k , yijk) with
absolute centered-slopes greater than 24 μm/year with absolute differences greater than five
μm as candidates for removal. We choose values that ensure the absolute consecutive-visit
centered-slopes are unreasonably large; absolute differences greater than five μm ensure that
the large slopes are not the result of short between-visit time differences. For each profile
with flagged pairs of observations, we calculate the sum of absolute visit differences for the
profile

∑Ji

j=2 |yij −yi(j−1)k| with and without either point in the flagged pair. We then remove
the point in the flagged pair that results in the larger reduction in the sum of absolute visit
differences. This rule ensures that the point removed is the more extreme outlier, deviating
more from other observations in the profile. For each profile, if two or more observations are
identified as outliers, we remove all remaining observations as well.

Eyes enrolled in the AGPS had moderate to severe glaucoma, thus exhibit a range of
glaucomatous damage. Figure 2 shows profile plots after outlier removal of GCC thickness
in μm against time in years since baseline visit for 10 subjects at all 36 superpixels. Baseline
GCC varies across subjects within superpixels, with maximum differences in thicknesses
between any of the AGPS subjects ranging from 40 to 100 μm across superpixels. From
Figure 2 we note that intercepts are spatially correlated and repeated thickness measurements
for each subject at each superpixel are highly correlated. The leftmost, temporal superpixels
tend to have lower baseline thicknesses and smaller spread than rightmost; nasal superpixels
show more variability both within and between subjects.

Figure 3 shows heatmaps of GCC measurements over time for four subjects. Each row rep-
resents a different subject and each block of 6 × 6 superpixels displays the GCC thicknesses
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FIG. 3. Heatmaps of ganglion cell complex (GCC) thickness measurements (μm) across eight visits for four
subjects for all 36 superpixels (top left 2.2 to bottom right 7.7). Each row is a different subject. The follow-up
time of each visit is labeled at the top of each block. All maps share a common color scale for comparison. GCC
measurements are highly correlated within subjects over time, illustrated by similar color patterns over time. The
color patterns also highlight the spatial correlation between locations. GCC measurements are highly variable
across subjects, as seen by the difference in color shades. Over time, the third row subject has noticeable thinning
in many superpixels while the other subjects are more stable in comparison.

observed in rows 2–7 and columns 2–7 at the labeled follow-up time above the block. The
range of baseline thicknesses across superpixels varies across subjects, with the first subject’s
baseline values ranging between 53 and 82 μm, while the third subject’s baseline values range
between 59 and 115 μm. Changes in GCC thickness over time also differ between Subject
1 and Subject 3. Subject 3 has noticeable decrease in thickness, thinning over time in many
superpixels (e.g., 2.7, 3.3, and 4.3), while Subject 1 is more stable over time. Within subjects
there is a range of baseline thicknesses and changes over time across superpixels. These data
characteristics motivate the need to model spatially varying random intercepts and slopes. An-
alyzing longitudinal GCC data separately in each superpixel, Mohammadzadeh et al. (2021)
show that models with subject-specific residual SDs perform better than models with fixed
residual SDs. Figure 4 shows heatmaps of estimated slopes (top) and residual SDs (bottom)
from SLR of GCC thickness on time since baseline in each superpixel for the same four sub-
jects as in Figure 3, where each column is a different subject. Estimated slopes and residual
SDs appear spatially correlated.

Bryan et al. (2015) model errors that affect all locations at a visit in glaucomatous VFs
as global visit effects. Similar to VF data, we suspect there are spatially correlated errors in
GCC measurements. We speculate these effects arise from the imaging process and segmen-
tation errors that affect multiple locations. To better visualize these effects, we plot empirical
residuals yijk − yik , where yik = ∑

yijk/Ji . Empirical residual profile plots allow us to bet-
ter see time trends within and across superpixels. Figure 5 provides an example of correlated
errors across superpixels, where there is a noticeable increase at four years of follow-up. It
is unlikely that such an increase is due to thickening of GCC but rather due to errors in the
imaging process or layer segmentation. Figure 5 shows spatially correlated slopes noticeable
in the region from superpixels 3.4 to 3.7 down to 6.4 to 6.7.
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FIG. 4. Heatmaps of: (a) estimated slopes (μm/year) and (b) residual standard deviations (SD) (μm) for the
same four subjects as in Figure 3 using simple linear regressions of ganglion cell complex (GCC) thicknesses
on time since baseline in each superpixel. Each column is a different subject. Estimated slopes appear spatially
correlated within subjects. Subject 3 has particularly steep negative slopes in the upper half of the eye, while
Subjects 1 and 2 have more stable slopes across superpixels. The estimated residual SDs vary within subject by
superpixel location. Subjects 1 and 4 have more uniform residual SDs across locations while Subjects 2 and 3
have some superpixels with much higher residual SDs.

FIG. 5. Empirical residual profile plots (superpixel mean subtracted from ganglion cell complex (GCC) thick-
ness) for a single subject across 36 superpixels. There is an increase at four years for many superpixel locations
suggesting visit-specific spatially correlated errors.
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2.4. Modeling goals. We are interested in estimating individual rates of change at the su-
perpixel level and predicting future GCC observations. To this end, we explicitly model the
correlations between intercepts, slopes, and residual SDs at both the population and subject
level. The intercepts are correlated with the magnitude of the slopes; as the baseline thick-
ness increases, rates of change are faster (Rabiolo et al. (2020)). Healthier eyes tend to have
more thickness at baseline, with more potential for progression but also more opportunities
for clinicians to intervene and prevent vision loss. Accounting for the relationships between
measurement variability and either baseline thickness or slopes may help to better estimate
the rates of progression and elucidate whether increased noise is associated with worsening
disease. As glaucoma progresses, the ganglion cell and inner plexiform layers, two sublayers
of GCC, show increased measurement variability especially as measures tend toward their
floor (Miraftabi et al. (2016)).

3. Methods. This section reviews the MGP priors we use to model the spatially varying
visit effects and coefficients, constructs the SHREVE model, defines the priors, and intro-
duces model comparison metrics.

3.1. Gaussian processes. A Gaussian spatial process (Rasmussen and Williams (2006),
Bogachev (1998), Banerjee, Carlin and Gelfand (2015)) is a stochastic process {z(s) : s ∈R

d}
in which any finite collection of real-valued random variables {z(s1), . . . , z(sK)} is distributed
as multivariate normal for every set of K ≥ 1 spatial locations s1, . . . , sK ∈ R

d , for dimension
d ≥ 1; we work only with d = 2. We denote a GP as

z(s) ∼ GP
(
m(s),C

(
s, s′)),

with mean function m(s) = E[z(s)] and covariance function C(s, s′) = cov[z(s), z(s′)] for
two locations s and s′, which may be the same or distinct. The covariance function C(s, s′)
models how similar outcomes z(s) and z(s′) are. We assume stationary and isotropic covari-
ance functions C(s, s′). Stationarity means C(s, s′) depends only on the spatial separation
vector s − s′ between points, and isotropy means C(s, s′) depends only on the distance be-
tween locations h = ‖s − s′‖, where ‖ · ‖ is the Euclidean norm, that is, C(s, s′) ≡ C(h).

We use Matérn covariance functions of the form σ 2M(h|ν, �), where σ 2 > 0 is the vari-
ance and M(h|ν, �) is the Matérn correlation function (Matérn (1986))

M(h|ν, �) = 21−ν

�(ν)
(
√

2νh/�)νKν(
√

2νh/�),

where ν > 0 is the smoothness parameter, � > 0 is the lengthscale, and Kν is the modified
Bessel function of the second kind of order ν (Abramowitz and Stegun (1964)). In general,
the process is m times mean square differentiable if and only if ν > m (Rasmussen and
Williams (2006)). The lengthscale parameter � controls how quickly the correlation decays
as a function of distance with larger � indicating slower correlation decay.

3.2. Multivariate Gaussian processes. Let z(s) = (z1(s), . . . , zP (s))T be a P ×1 stochas-
tic process, where each component zp(s) for p = 1, . . . ,P is a scalar random variable at lo-
cation s. Then z(s) is an MGP if any random vector (z(s1)

T , . . . , z(sK)T )T from any set of
K ≥ 1 locations s1, . . . , sK has a multivariate normal distribution. The MGP is an extension
of the univariate GP where the random variables z(s) are vector-valued. We denote an MGP
as

z(s) ∼ MGP
(
m(s),C

(
s, s′)),

with P × 1 mean vector m(s) and P × P cross-covariance matrix function C(s, s′) =
cov[z(s), z(s′)] = {Cpq(s, s′)}Pp,q=1. Functions Cpq(s, s′) = cov[zp(s), zq(s′)], for p,q =
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1, . . . ,P , are called marginal covariance functions when p = q and cross-covariance func-
tions when p 
= q .

We want to allow each marginal process to have its own spatial correlation function.
Each marginal covariance function Cpp is modeled with a Matérn correlation function,
Cpp(h) = σ 2

ppM(h|νpp, �pp), for p = 1, . . . ,P , with variance parameter σ 2
pp > 0, smooth-

ness parameter νpp , and lengthscale parameter �pp . We model each cross-covariance function
Cpq with a Matérn correlation function, Cpq(h) = σpqM(h|νpq, �pq), for 1 ≤ p 
= q ≤ P ,
with covariance parameter σpq , smoothness parameter νpq , and lengthscale parameter �pq .
We assume marginal covariance Cpp and cross-covariance Cpq functions to be Matérn fol-
lowing sufficient conditions on parameters νpp , νpq , �p , �pq , σpp , and σpq that result in a
nonnegative definite cross-covariance function (Apanasovich, Genton and Sun (2012)). We
use the simplest parameterization, where no additional parameters beyond σ 2

pp , νpp , and �pp

are required to model the smoothness and lengthscale parameters for the cross-covariances.
The cross-covariance function C(s, s′) is nonnegative definite when

νpq(νpp, νqq) = νpp + νqq

2
,

�pq(�p, �q) =
√√√√ 2

�−2
p + �−2

q

,(1)

σpq(νpp, νqq, �p, �q, σpp, σqq,Rpq) = σppσqq

�pq(�p, �q)√
�p�q

�(νpq(νpp, νqq))

�1/2(νpp) + �1/2(νqq)
Rpq,(2)

where R = {Rpq} is a nonnegative definite P × P correlation matrix with diagonal elements
equal to 1 and nondiagonal elements in the closed interval [−1, 1]. The cross-correlation
ρpq = σpq/σppσqq = corr(zp(s), zq(s)) is the correlation between zp(s) and zq(s).

3.3. Model specification for a spatially varying hierarchical random effects with visit
effects model. The proposed SHREVE model allows random intercepts, slopes, and log-
residual SDs to be correlated within and across locations while accounting for within-subject
variability and spatially correlated visit-specific errors. For ease of notation, we specify the
model assuming no missing data but note that complete data is not a requirement. We model
yijk as

yijk = α0k + α1ktij + β0ik + β1iktij + γijk + εijk,

εijk|τ 2
ik ∼ N

(
0, τ 2

ik

)
,

log τik = φk + σik,

where α0k , α1k , and φk are the superpixel k population-level intercept, slope, and log-residual
SD processes, respectively, β0ik , β1ik , and σik are subject-specific intercept, slope, and log-
residual SD processes, respectively, in superpixel k and γijk is the visit effect process at
location sk for subject i visit j . Figure 6 presents the model graphically.

Let αk = (α0k, α1k, φk)
T denote the population-level (PL) multivariate spatial pro-

cess, which we model with MGP αk|μ, θα ∼ MGP(μ,Cα(sk, sk′)), with mean vector
μ = (μ0,μ1,μφ)T and PL cross-covariance matrix function Cα(sk, sk′) with hyperpa-
rameters θα = {σα,pp, να,p, �α,p,Rα,p ∈ {1,2,3}}. The parameters μ0, μ1, and μφ are
the global grand mean intercept, slope, and log-residual SD, respectively. PL marginal
covariance functions Cα,pp(sk, sk′) = σ 2

α,ppM(h|να,p, �α,p), for p = 1, . . . ,3, have PL
marginal variances σ 2

α,pp , PL smoothness parameters να,p , and PL lengthscales �α,p . PL
cross-covariance functions Cα,pq(sk, sk′) = σα,pqM(h|να,pq, �α,pq) have covariance param-
eters σα,pq between processes p and q , smoothness parameters να,pq , and lengthscales
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FIG. 6. Plate diagram of the proposed model. Blue nodes are latent variables, red nodes are observed variables,
gray nodes are deterministic nodes, GP stands for Gaussian process, and MGP stands for multivariate Gaussian
process. Plates are used to group variables repeated together over subjects, time, and space, where i = 1, . . . ,N

indexes subjects, j = 1, . . . , Ji indexes subject i’s visits, and k = 1, . . . ,K indexes superpixel locations.

�α,pq . Here h = ‖sk − sk′‖ is the distance between two superpixel locations, σα,pq ≡
σpq(να,p, να,q, �α,p, �α,q, σα,pp, σα,qq,Rα,pq) is a function of σα,pp and σα,qq as defined
in (2), and �α,pq ≡ �pq(�α,p, �α,q) is a function of �α,p and �α,q as in (1). The 3 × 3 cross-
correlation matrix Rα is an unknown symmetric matrix with 1’s on the diagonal and with
(p, q)th element the correlation parameter Rα,pq = Rα,qp .

Similarly, we model random effects (RE) βik = (β0ik, β1ik, σik)
T as βik|θβ ∼ MGP(0,

Cβ(sk, sk′)), with mean vector 0 and cross-covariance matrix function Cβ(sk, sk′) with
hyperparameters θβ = {σβ,pp, νβ,p, �β,p,Rβ,p ∈ {1,2,3}}. RE marginal covariance func-
tions Cβ,pp(sk, sk′) = σ 2

β,ppM(h|νβ,p, �β,p) for p = 1, . . . ,3 have RE marginal variances

σ 2
β,pp , smoothness parameters νβ,p , and lengthscales �β,p . RE cross-covariance func-

tions Cβ,pq(sk, sk′) = σβ,pqM(h|νβ,pq, �β,pq) have RE covariance parameters σβ,pq ≡
σpq(νβ,p, νβ,q, �β,p, �β,q, σβ,pp, σβ,qq,Rβ,pq), lengthscales �β,pq ≡ �pq(�β,p, �β,q), and un-
known cross-correlation matrix Rβ as defined in (1) and (2). We model the spatially varying
visit effects γijk with mean 0 GPs γijk|σv, νv, �v ∼ GP(0,Cv(sk, sk′)), with visit effects co-
variance function Cv(sk, sk′) = σ 2

v M(h|νv, �v).

3.4. Priors. We use weakly informative priors to keep inferences within a reasonable
range and allow computations to proceed satisfactorily. We rescale the distance between su-
perpixels such that the largest distance between any two superpixels is one unit. The clos-
est any two superpixels can be is ≈ 0.14 units. We expect lengthscales to plausibly fall in
this range. At the same time, we wish to avoid infinitesimal lengthscales. We assign inde-
pendent and identical inverse gamma priors on all MGP lengthscale parameters �α,1, �α,2,
�α,3, �β,1, �β,2, �β,3, �v ∼ IG(3,1) with mean 0.5 and SD 0.5. We evaluate the sensitiv-
ity of the SHREVE model to lengthscale priors in Supplementary Material 2 (Su et al.
(2024)). Using uniform priors for lengthscales results in almost identical posterior means
and intervals for the subject-level MGP lengthscale parameters but larger posterior means
and intervals for the population-level MGP lengthscale parameters. For the MGP SD pa-
rameters, we wish to avoid flat priors that could pull the posterior toward extreme values.
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We assign truncated-normal priors on all MGP SD parameters σα,11, σβ,11 ∼ N+(0,152),
σα,22, σα,33, σβ,22, σβ,33, σv ∼ N+(0,2.52), where N+(a, b) is a normal distribution with
mean a and variance b restricted to the positive real line. We assign independent normal pri-
ors on the global effects μ0 ∼ N(77,202), μ1 ∼ N(−0.47,1.42), μφ ∼ N(0.5,0.52). These
priors cover the range of plausible values based on a review of the ophthalmology literature.
Studies report GCC thicknesses ranging from 55 to 111 μm in glaucoma patients and from 55
to 71 μm in late-stage glaucoma (Tan et al. (2008), Leung et al. (2013), Nishida et al. (2022),
Ghita et al. (2023)). The average rates of change range from −1.1 to −0.14 μm/year, with
variability depending on the OCT system used (Leung et al. (2013), Holló and Naghizadeh
(2015), Zhang et al. (2016b)). The residual SDs range from 0.8 to 2.6 μm (Tan et al. (2008),
Holló and Naghizadeh (2015)).

For the correlation matrices Rα and Rβ , we assign marginally uniform priors on the in-
dividual correlations derived from the inverse Wishart distribution with 3 × 3 identity ma-
trix scale matrix parameter and four degrees of freedom IW(I3,4) (Barnard, McCulloch
and Meng (2000)). When � has a standard inverse-Wishart distribution, we can decompose
� = SRS in terms of the diagonal standard deviation matrix S and correlation matrix R to
obtain the prior for the correlation matrices. We set all MGP smoothness parameters να,1,
να,2, να,3, νβ,1, νβ,2, νβ,3, νv = 1

2 since we obtain measurements from a coarse grid of su-
perpixel locations and expect the processes to be rough. When ν = 1

2 , the Matern correlation
function reduces to the popular exponential kernel M(h|1

2 , �) = exp(−‖h‖/�).

3.5. Computation and inference. For data analysis and visualization, we use the R pro-
gramming language (R Core Team (2021)) and GGPLOT2 (Wickham (2016)). We use Markov
chain Monte Carlo (MCMC) methods (Metropolis et al. (1953), Robert and Casella (2004))
implemented in NIMBLE v0.13.0 (de Valpine et al. (2017)). We specify the model at the ob-
servation level and omit observations removed in the data cleaning step. To sample from the
posteriors, we use Gibbs sampling and update specific parameters using the automated fac-
tor slice sampler or Metropolis–Hastings sampler within Gibbs. We update the global effects
μ0, μ1, and μφ using scalar Metropolis–Hastings random walk samplers, the visit effect GP
lengthscale �ν and subject-level residual SD GP SD parameter σβ,33 together using the auto-
mated factor slice sampler (Tibbits et al. (2014)), the subject-level random effects β0ik , β1ik ,
and σik , and visit effects γijk using multivariate Metropolis–Hastings random walk samplers
in spatial sub-blocks. We tested various schemes for sampling sub-blocks of the subject-level
random effects and visit effects to improve sampling efficiency (Risser and Turek (2020)). We
jointly sample subject-level intercepts, slopes, and the first visit effect in spatial sub-blocks of
size 3, a total of 12 parameters for each sampler. We separately sample the subject-level resid-
ual SDs in spatial sub-blocks of size 6 and the remaining visit effects in spatial sub-blocks
of size 3. Each pair of SD and lengthscale parameters from MGPs and GPs were sampled
together (e.g., (σα,11, �α,1)), except for the subject-level residual SDs and visit effects where
opposites were paired together (σβ,33, �ν) and (σν, �β,3). We run all models with nine chains
of 250,000 iterations after a burn-in of 30,000, a thin of 100 for a total of 19,800 poste-
rior samples. We provide the NIMBLE model code for the SHREVE model as an R script in
Supplementary Material 1.

3.6. Model comparison. We fit the SHREVE model to the AGPS data and compare
model fit of the SHREVE model to seven nested models, to a CAR model fit separately
for each eye, and to SLR fit separately for each subject and superpixel location. The seven
submodels were SHREVE omitting: (a) the population-level residual SD process φk , (b) the
subject-specific residual SD process σik , (c) the spatially varying visit effects γijk , and all
combinations (ab), (ac), (bc), and (abc). We call the SHREVE model without visit effects
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the spatially varying hierarchical random effects (SHRE) model. For CAR we run a separate
model for each eye with intrinsic CAR priors inspired by the model developed by Betz-
Stablein et al. (2013) for visual field data. We provide further details on the CAR model in
Supplementary Material 2. For SLR, we run a separate model for each eye and superpixel
using flat priors with results equivalent to classical least squares.

We compare models with the Watanabe–Akaike (or widely applicable) information crite-
rion (WAIC) (Watanabe (2010), Gelman et al. (2014)) and approximate leave-one-out cross-
validation (LOO) using Pareto Smoothed Importance Sampling (Vehtari, Gelman and Gabry
(2017)). We report WAIC

WAIC = −2

[
n∑

i=1

Ji∑
j=1

K∑
k=1

log

(
1

S

S∑
s=1

p
(
yijk|θs)) −

n∑
i=1

Ji∑
j=1

K∑
k=1

V S
s=1

(
logp

(
yijk|θs))]

summing over all data points yijk , where p(yijk|θ) is the pointwise predictive density, θ are
the model parameters, superscript s denotes parameters drawn at the sth iteration for s =
1, . . . , S posterior samples, and V S

s=1 denotes the sample variance over S posterior samples.
We report approximate LOO

LOO = −2
n∑

i=1

Ji∑
j=1

K∑
k=1

log
(∑

s=1 ws
ijkp(yijk|θs)∑
s=1 ws

ijk

)
,

where ws
ijk , s = 1, . . . , S is a vector of importance weights for data point yijk at iteration s

and ws
ijk = (p(yijk|θs))−1, except for extreme weights. Approximate LOO estimates the out-

of-sample predictive accuracy of the model (Stone (1977)). Lower WAIC and LOO indicate
better fit.

To assess predictive accuracy of the proposed model, we compare models on mean squared
prediction error

MSPE =
∑S

s=1
∑n

i=1
∑

k∈Ki
(yiJik − ŷs

iJik
)2

SNpred

for s = 1, . . . , S posterior MCMC samples, i = 1, . . . , n subjects, k ∈ Ki held out superpixels
for subject i, held out observations yiJik , and predicted observations for each posterior sam-
ple ŷs

iJik
, of Npred total held out observations after fitting the models. In the first prediction

scenario, we randomly sample and hold out seven observations yiJik , or approximately 20%,
at the last visit for each of 110 subjects and six observations for one subject that only has
32 observations available at the last visit, for a total of Npred = 111 × 7 − 1 = 776 obser-
vations, and fit models with the remaining observations. In the second prediction scenario,
we hold out all observations yiJik at the last visit for each of the 111 subjects, for a total
of Npred = 3974 observations, and fit models with the remaining observations. Not all ob-
servations are available at all superpixels because we remove some observations in the data
cleaning step.

In the first prediction scenario, we define a predicted observation at each posterior sample
s as

ŷs
iJik

= αs
0k + αs

1ktiJi
+ βs

0ik + βs
1iktiJi

+ γ s
iJik

,(3)

where tiJi
is the time observed and γ s

iJik
is the visit effect for the held out observation at the

ith subject’s last visit for the SHREVE models. For the SHRE models, there is no γ s
iJik

visit
effect term in (3). In the second prediction scenario, we define a predicted observation as

ŷs
iJik

= αs
0k + αs

1ktiJi
+ βs

0ik + βs
1iktiJi

for both SHREVE and SHRE models.
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4. Simulation results. We conduct a simulation study to assess the performance of the
SHREVE model in comparison to seven nested models, a CAR model fit separately on
data from each eye, and SLR fit separately for each subject and location as described in
Section 3.6. We evaluate how well each model estimates the subject-superpixel intercepts
α0k + β0ik and slopes α1k + β1ik . We implement a simulation scenario with a sample size
of 50 subjects and a 5 × 5 grid of 25 superpixel locations. We rescale the distances between
superpixels such that the largest distance between any two superpixels is one unit.

To compare the estimation accuracy of subject-superpixel intercepts and slopes, we gen-
erate data with the following setup. First, we generate a set of global parameters (μ0, μ1,
μφ) from normal distributions and GP and MGP hyperparameters from uniform distribu-
tions. Then we draw a set of population-level parameters (αk) and subject-level parameters
(βik), given the generated hyperparameters. The generated α0k +β0ik and α1k +β1ik serve as
the true subject-superpixel intercepts and slopes across 100 simulation runs. For each of 100
simulated data sets, we generate GCC outcomes by introducing random measurement error
εijk from a normal distribution with residual SD exp(φk + σik) and random visit effects γijk .
We provide R code for the simulation study in Supplementary Material 1 and present further
details regarding data generation in Supplementary Material 2.

We evaluate the accuracy of the estimates for the 50 × 25 = 1250 possible subject-
superpixel intercepts and slopes. For each simulation run, we take the posterior mean of
α0k + β0ik and α1k + β1ik to be the model estimates of intercepts and slopes, respectively.
For each intercept and slope, we record the absolute bias |(∑100

m=1(estimatem − truth))/100|,
95% credible interval (CrI) coverage probability, 95% credible interval length (CrIL), and

root mean squared error RMSE =
√

(
∑100

m=1(estimatem − truth)2)/100 where m indexes the
data set.

Supplementary Material Table S1 displays results for the intercepts. We provide the mean,
2.5% quantile, and 97.5% quantile for each metric across the 1250 intercepts and slopes. For
intercepts the SHREVE model has the smallest absolute bias, while SLR has the largest
absolute bias (mean: 1.13 vs. 1.48). On average, all models with visits effects and SLR
have appropriate 95% CrI coverage, while the models without visit effects and CAR have
slightly lower coverage (range: 0.93 to 0.94). The distribution of coverage probabilities across
subject-superpixels is more variable for the hierarchical models than for SLR. On average,
SLR has much larger CrIL than all other models, up to 60% wider than the SHREVE model.
On average, the SHREVE model has the smallest RMSE, while SLR has the largest RMSE
(1.40 vs. 1.84).

Table 1 presents results for the slopes. For slopes the SHREVE model has the smallest
absolute bias, while SLR has the largest absolute bias (mean: 0.44 vs. 0.71). On average,
all models with visits effects and SLR have appropriate 95% CrI coverage, while the mod-
els without visit effects and CAR have slightly lower coverage (range: 0.90 to 0.93). The
distribution of coverage probabilities across subject-superpixels are more variable for the
hierarchical models than for SLR, suggesting some slopes having anticonservative posterior
SDs. On average, SLR has much larger CrIL than all other models, up to 110% wider than the
SHREVE model. The range of CrILs for SLR is also much wider than the other models; the
97.5% quantile CrIL for SLR is 12.15 while the second largest is 3.89 from the CAR model.
On average, the SHREVE model has the smallest RMSE, while SLR has the largest RMSE
(0.52 vs. 0.89). These results provide evidence that the SHREVE model offers markedly im-
proved performance in estimating subject-superpixel intercepts and slopes when compared
to SLR.

5. Advanced glaucoma progression study. After identifying and removing approxi-
mately 0.5% of the data as outliers, we analyze 29,179 observations from 111 subjects over



SPATIALLY VARYING HIERARCHICAL RANDOM EFFECTS MODEL 3457

TABLE 1
Summary of the mean, 2.5% quantile, and 97.5% quantile absolute bias (Abs Bias), 95 % credible interval

coverage probability (Coverage), 95 % credible interval length (CrIL), and root mean squared error (RMSE)
across the 1250 subject-location slopes in the simulation study. The SHREVE model has the smallest absolute
bias on average, appropriate 95% credible interval coverage, and the smallest RMSE. The smallest absolute

bias, largest coverage probability, smallest CrIL, and smallest RMSE are bolded

Abs Bias Summary Coverage Summary CrIL Summary RMSE Summary

Model Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

SHREVE 0.44 0.26 0.96 0.95 0.68 1.00 2.13 1.43 2.91 0.52 0.32 1.05
SHREVE-(a) 0.44 0.26 0.96 0.95 0.70 1.00 2.15 1.50 2.92 0.53 0.32 1.05
SHREVE-(b) 0.46 0.24 1.07 0.94 0.68 1.00 2.21 1.50 2.96 0.54 0.30 1.15
SHREVE-(ab) 0.49 0.21 1.06 0.95 0.63 1.00 2.42 2.11 2.90 0.58 0.27 1.16
SHRE 0.45 0.26 1.01 0.90 0.55 1.00 1.89 1.27 2.62 0.54 0.33 1.11
SHRE-(a) 0.45 0.26 1.01 0.90 0.56 1.00 1.91 1.34 2.65 0.55 0.33 1.10
SHRE-(b) 0.47 0.25 1.05 0.90 0.54 1.00 1.97 1.33 2.65 0.56 0.31 1.16
SHRE-(ab) 0.50 0.23 1.05 0.92 0.56 1.00 2.21 1.90 2.72 0.59 0.29 1.18
CAR 0.52 0.25 1.06 0.93 0.68 1.00 2.49 1.66 3.89 0.64 0.31 1.31
SLR 0.71 0.30 2.03 0.95 0.90 0.99 4.38 1.76 12.15 0.89 0.37 2.54

36 superpixels. Following Vehtari et al.’s (2021) recommendation for assessing convergence,
the bulk and tail effective sample sizes were all greater than 100 per chain, and the potential
scale reduction factor R̂ were all less than 1.01. Visual assessment of model convergence
show satisfactory results. We show efficiency per iteration plots of the seven parameters with
the largest R̂ in Supplementary Material Figure S1 and summarize convergence diagnostics
in Supplementary Material Table S3. The total runtime for the 250,000 iterations is approxi-
mately 26.4 hours (Apple M1 Pro 10-core CPU) for the SHREVE model.

Table 2 gives the WAIC, LOO, and MSPE of models considered. The SHREVE model
has the lowest WAIC and LOO. Comparing pairs of SHREVE and SHRE models with and
without the: (a) population-level residual SD process and (b) subject-level residual SD pro-

TABLE 2
Model fit comparison with widely applicable information criterion (WAIC), approximate leave-one-out

cross-validation with Pareto smoothed importance sampling (LOO), mean squared prediction error (MSPE) of
predictions, 95% prediction interval coverage probabilities (Cov %), and mean 95% prediction interval length
(PIL). For Scenario 1 we hold out seven randomly sampled observations yiJik at the last visit of each of 110

AGPS subjects and 6 observations from one subject. For Scenario 2 we hold out all observations yiJik at the last
visit of all 111 AGPS subjects. The smallest WAIC, LOO, PIL, and MSPE and largest prediction coverage values

are bolded

Scenario 1 Scenario 2

Model WAIC LOO MSPE Cov % PIL MSPE Cov % PIL

SHREVE 107,608.9 113,303.8 6.9 77.7 4.99 9.1 77.2 5.60
SHREVE-(a) 107,942.6 113,521.5 6.9 77.8 5.00 9.0 77.3 5.62
SHREVE-(b) 110,985.2 116,907.91 6.8 81.8 5.47 9.4 80.3 6.09
SHREVE-(ab) 113,259.2 118,616.4 6.9 83.2 5.60 9.5 81.0 6.22
SHRE 124,388.8 125,293.7 7.2 67.8 4.38 9.1 65.2 4.48
SHRE-(a) 124,469.2 125,456.6 7.1 68.2 4.39 9.0 65.6 4.51
SHRE-(b) 129,357.6 129,881.6 7.5 73.3 4.92 9.7 71.1 4.99
SHRE-(ab) 130,182.1 130,708.7 7.5 75.4 5.03 9.7 71.5 5.09
CAR 126,691.9 127,390.6 7.7 71.5 5.00 10.3 69.1 5.00
SLR 128,870.2 132,916.3 39.7 83.9 9.73 52.9 83.7 9.70
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cess, omitting: (a) increases WAIC (LOO) by up to 334 (218) while omitting (b) increases
WAIC (LOO) by up to 4969 (4588). Omitting visit effects increases WAIC (LOO) by up to
18,372 (12,974). SLR has lower WAIC than the two SHRE models without (b), but SLR still
has higher LOO. Having subject-specific residual SDs is more important for models without
a visit effect component, as the difference in WAIC (LOO) between SHRE and SHRE-(b) is
larger by 1593 (984) than the difference between SHREVE and SHREVE-(b).

For predictions in the first scenario, the MSPE for SLR is 5.7 times that of the SHREVE
model (39.7 vs. 6.9 μm2) and 5.5 times that of the SHRE model (39.7 vs. 7.2 μm2). Among
the hierarchical models, the biggest distinction in MSPE is between models with and with-
out visit effects. The 95% prediction interval coverage probability is lower for the SHREVE
model than SLR (77.7% vs. 83.9%), although none of the models achieve appropriate 95%
coverage. Models without visit effects and the CAR model have noticeably lower coverage
probabilities ranging from 67.8% to 75.4%. On average, SLR has the largest prediction inter-
val length (PIL), almost double that of the SHREVE model (9.73 vs. 4.99).

For predictions in the second scenario where the last visit for all subjects is held out, the
MSPE for SLR is 5.8 times that of the SHREVE model and SHRE model (52.9 vs. 9.1 μm2).
The 95% prediction interval coverage probability is lower for the SHREVE model than SLR
(77.2% vs. 83.7%), although none of the models achieve appropriate 95% coverage. Com-
paring pairs of SHREVE and SHRE models, omitting the subject-level residual SD process
consistently increases the MSPE, while omitting the population-level residual SD process has
a negligible effect on MSPE. Similar to Scenario 1, SLR has the largest PIL, almost double
that of the SHREVE model (9.70 vs. 5.60).

Figure 7 plots profiles and posterior mean fitted lines from the SHREVE model and SLR
for one subject for six superpixels that had the last (seventh) observation held out in the sec-
ond prediction scenario. The SHREVE model better estimates slopes for noisy superpixels,
like 4.3 and 5.7. All predictions of the last visit in the six superpixels by the SHREVE model
are closer to the GCC observed at tij = 3.6 than those by SLR.

FIG. 7. Comparison of predicted observations and model fit from the SHREVE model and simple linear regres-
sion (SLR) after holding out the last observation at 3.6 years follow-up of this subject. The gray line plots the raw
data, the red line is the posterior mean fitted line from the SHREVE model without adding in the visit effects, and
the blue line shows the fitted line from SLR. The SHREVE model is able to better estimate slopes and predict the
last observation in noisy superpixels, like 4.3 and 5.7, than SLR.
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TABLE 3
Posterior mean and 95% credible interval (CrI) for global parameters and subject-level multivariate Gaussian

process (MGP) parameters comparing the SHREVE and SHRE models

SHREVE Model SHRE Model

Parameters Symbols Mean 95% CrI Mean 95% CrI

Global Parameters
Intercept μ0 70.48 (51.43, 89.09) 71.13 (52.87, 89.48)
Slope μ1 −0.26 (−0.72, 0.27) −0.26 (−0.76, 0.31)
Log Residual SD μφ 0.25 (−0.16, 0.77) 0.63 (0.30, 0.97)

Subject-Level MGP SD Parameters
Intercept σβ,11 16.21 (15.12, 17.45) 16.36 (15.27, 17.63)
Slope σβ,22 0.94 (0.87, 1.03) 1.00 (0.92, 1.09)
Log Residual SD σβ,33 0.45 (0.42, 0.49) 0.34 (0.32, 0.37)

Subject-Level MGP Lengthscale Parameters
Intercept �β,1 0.77 (0.66, 0.90) 0.79 (0.68, 0.93)
Slope �β,2 0.59 (0.48, 0.73) 0.96 (0.77, 1.19)
Log Residual SD �β,3 0.27 (0.22, 0.32) 0.53 (0.43, 0.65)

Subject-Level MGP Correlation Parameters
Intercept/Slope ρβ,12 −0.15 (−0.19, −0.10) −0.13 (−0.18, −0.08)
Intercept/Log Residual SD ρβ,13 0.15 (0.10, 0.20) 0.17 (0.12, 0.23)
Slope/Log Residual SD ρβ,23 −0.24 (−0.32, −0.17) −0.26 (−0.34, −0.18)

Visit Effect Parameters
Lengthscale �v 0.50 (0.44, 0.58)
SD σv 1.42 (1.37, 1.48)

Table 3 gives posterior means and 95% CrI for parameters of interest from the SHREVE
and SHRE models. The SHREVE global log-residual SD parameter has a smaller posterior
mean than SHRE (0.35 vs. 0.66 μm), although CrIs overlap; global intercepts and slopes
have similar posterior means and CrIs. The SHREVE subject-level slopes and log-residual
SDs MGP lengthscales are shorter than for the SHRE model, implying that the spatial corre-
lation of subject-level slopes and log-residual SDs decays faster after including visit effects,
allowing random effects to vary more across the macula. The SHREVE subject-level MGP
SD parameter is larger than from SHRE, meaning the variability of subject-specific residual
SDs is higher within a superpixel for the SHREVE model. All other subject-level MGP pa-
rameters are similar between the models. Supplementary Material Table S8 gives posterior
means and 95% CrIs for the population-level MGP parameters. The population-level MGP
parameters are similar between the two models.

Figure 8 plots spatial correlations M(h) as a function of distance h between superpixels
for the SHREVE and SHRE models. At 1.0 units distance, the spatial correlation of subject-
specific slopes drops to exp(−1.69) ≈ 0.18 for the SHREVE model but is exp(−1.04) ≈ 0.35
for the SHRE model. At 1.0 units distance, the spatial correlation of subject-specific log-
residual SDs is 0.02 for the SHREVE model but around 0.15 for the SHRE model. The
shorter lengthscales in the SHREVE model result in markedly reduced correlations at the
same distance between superpixels.

Figure 9 presents heatmaps of the posterior means and SDs of the log-residual SDs from
the SHREVE and SHRE models. For most superpixels the SHREVE model uniformly re-
duces log-residual SDs by approximately 0.5 compared to the SHRE model. The four central
superpixels (4.4, 4.5, 5.4, and 5.5) and superpixels in the seventh column have higher log-
residual SDs and have smaller differences in log-residual SDs between the models. SHREVE
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FIG. 8. Posterior mean (line) and 95% pointwise credible intervals (colored bands) of correlation as a func-
tion of the distance h between superpixels for subject-specific intercepts, slopes, and log-residual SDs from the
SHREVE (Visit Effects) and SHRE (No Visit Effects) models. The correlations decay faster in the SHREVE model
with shorter lengthscales for slopes and log-residual SDs. The dashed line indicates where the correlation is
exp(−1), and the distance between superpixels is equal to the lengthscale in the exponential kernel.

breaks down measurement error into two components, spatially correlated errors due to the
imaging process and general measurement noise. By accounting for visit effects, we reduce
residual variance, leading to substantial improvement in model fit.

We compare subject-specific slopes estimated from the SHREVE model to those estimated
using SLR. We declare a slope to be significantly negative or positive when the upper bound
or lower bound of the 95% CrI is less than or greater than 0, respectively. Across the 3990
subject-superpixel profiles, the SHREVE model detects a higher proportion of significant
negative slopes (21.4% vs. 18.0%) and lower proportion of significant positive slopes (3.1%
vs. 4.3%) as compared to SLR. Figure 10 shows the proportion of significant negative slopes
by superpixel, and Supplementary Material Figure S2 shows the proportion of significant pos-
itive slopes by superpixel. The SHREVE model detects 10% more significant negative slopes
in six of 36 superpixels and 5% less significant positive slopes in five of 36 superpixels. Be-
cause glaucoma is an irreversible disease, GCC thicknesses are not expected to increase over
time. These findings indicate SHREVE is more sensitive in detecting worsening slopes and

FIG. 9. Heatmap of the log-residual standard deviations (SD) comparing the SHREVE (Visit Effects) and SHRE
(No Visit Effects) models. The values shown are the posterior mean (posterior SD) across the 36 superpixels. The
log-residual SDs from the SHREVE model are uniformly reduced across all superpixels compared to those from
the SHRE model. The white dot is the fovea.
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FIG. 10. Bar charts of the proportion of significant negative slopes detected by the SHREVE model and simple
linear regression (SLR) across the 36 superpixels. The difference (� = SHREVE − SLR) in proportion is labeled
at the top of each subplot. Across all locations, the SHREVE model detects a higher proportion of significant
negative slopes (21.4% vs. 18.0%) than SLR.

possibly reduces false positive rates as compared to SLR. Supplementary Material Figure S3
shows a heatmap of posterior means of population-level slopes from the SHREVE model.
Because the SHREVE model allows for inference on population parameters, clinicians will
be able to examine covariates that may influence progression across the macula. Slopes cor-
responding to superpixels around the fovea are significantly negative and much steeper than
superpixels around the outer edge of the macular area.

6. Discussion. We motivate and develop a Bayesian hierarchical model with population-
and subject-level spatially varying coefficients and show that including visit effects reduces
error in predicting future observations and greatly improves model fit. In current practice,
ophthalmologists use SLR to assess slopes for individual subject-superpixel profiles, using
information from only a single subject and location at a time. To better estimate subject-
specific slopes, we include information from the whole cohort, explicitly model the corre-
lations between subject-specific intercepts, slopes, and log-residual SDs, allow population
parameters and random effects to be spatially correlated, and account for visit-specific spa-
tially correlated errors. Using information from the entire cohort, our proposed model leads
to decreased noise in estimating subject-specific slopes, having smaller posterior SDs in 79%
of subject-superpixel slopes as compared to SLR.

Using information from the whole cohort to improve estimation of subject-specific slopes
may be counterintuitive to clinicians. Here we show that leveraging information from multi-
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ple subjects and locations facilitates more accurate estimation of subject-specific slopes. This
is highlighted by the simulation study, where SLR has the highest RMSE of all models com-
pared and is, on average, 70% higher than the SHREVE model (0.89 vs. 0.52 μm). Another
benefit of using data from multiple subjects is the ability to make inferences on population pa-
rameters. This model allows clinicians to examine the associations between covariates such as
age, ethnicity, gender, treatment, intraocular pressure, and blood pressure measures and loss
of GCC thickness. This would not be possible using simpler models that fit data separately
for each eye or for each eye-superpixel, as currently done in practice.

We make several modeling assumptions. There are many sources of error in obtaining
GCC thickness measurements from OCT scans. We remove obvious outliers prior to mod-
eling and find Gaussian errors are appropriate. We present additional model comparisons in
Supplementary Material 2 to test our assumption of normality, where we show that a model
with Gaussian errors gives better fit than one with t-distributed errors. Within a sensitiv-
ity analysis in Supplementary Material 2, we find our model to be robust to the removal of
outliers. By separating measurement errors into visit-specific spatially correlated errors and
other measurement noise, we are better able to detect eye-superpixels where GCC thick-
nesses are progressing most rapidly. In this way we do not assume measurement errors to be
independent and identically distributed in space. In a previous study, Mohammadzadeh et al.
(2021) found no evidence for an autoregressive variance structure, suggesting residuals are
not correlated in time after accounting for random intercepts and slopes. Hence, we do not
include an autoregressive variance structure and instead assume errors are independent and
identically distributed in time. We treat time as a variable to estimate slopes of progression
and do not assume further temporal dependence, modeling random effects as strictly spatial
processes. The multivariate Matérn covariance functions we use to model the random effects
have distinct lengthscales for each marginal process and are nonseparable. Alternatively, we
can employ separable multivariate Matérn covariance functions by assuming all lengthscales
are the same across marginal processes. Noteworthy, we do find evidence of distinct length-
scales for each marginal process, supporting our use of nonseparable MGPs. Additionally, we
assume covariance functions are stationary and isotropic. To test our modeling assumptions
of stationarity and isotropy, we provide additional model comparisons in Supplementary Ma-
terial 2. While nonstationary covariance functions improve fit, we show that there is little
practical benefit due to the small improvement. Despite these limitations, our approach does
help identify progression of glaucoma for more individualized treatment plans, especially in
comparison to SLR.

Other methods for modeling spatial variation over discrete locations include CAR models,
where random effect distributions are conditional on some neighboring values (Betz-Stablein
et al. (2013), Berchuk, Mwanza and Warren (2019)). One could consider multivariate CAR
models as an alternative to the MGPs used in the SHREVE model. Jin, Carlin and Banerjee
(2005) propose a generalized multivariate CAR to overcome challenges in specifying joint
multivariate distributions with positive definite covariance matrices through the specification
of simpler conditionals and marginal forms. However, such models suffer from the condi-
tional specification imposing an arbitrary ordering on the variables being modeled. More
recently, MacNab (2016a,b) introduces a framework for coregionalized multivariate CAR
models, including a new class of order-free models that allow spatial interaction parameters
and coregionalization coefficients to remain identifiable. Future research comparing order-
free multivariate CAR models to the MGPs in the SHREVE model for this application would
be of great interest.

We model spatial correlation between all locations with GPs, where the spatial correlation
depends only on the distance between any two locations. In addition to our a priori specifi-
cation of ν = 1

2 , we fit our model using Matérn correlation functions with ν = 3
2 , ν = 5

2 , and
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ν = ∞ (squared exponential kernel, Rasmussen and Williams 2006). The exponential kernel
balances model fit with computational efficiency. One limitation of using GPs is the increas-
ing difficulty in fitting when the number of locations is large. Fitting GP models involves
matrix inversion which increases computational complexity in cubic order with the number
of locations. When the number of locations is too large, approximations for the processes
should be considered (Banerjee et al. (2008)). Specifically, to provide inference when the
number of spatial locations is in the thousands, we could employ nearest-neighbor Gaussian
processes (NNGP) as sparsity-inducing spatial priors (Datta et al. (2016)). The computational
burden of NNGPs scales linearly with the number of locations, offering substantial scalabil-
ity, while allowing fully process-based modeling. Nonetheless, our model developments will
benefit ophthalmologists as they seek to better estimate subject-specific slopes from structural
thickness measurements.

We developed the current model specifically for GCC macular thickness measurements.
Of further interest is to simultaneously model all the inner retinal layers that make up GCC to
identify which sublayers may be worsening faster than others while accounting for between-
layer correlations. Future extensions of the SHREVE model could include working with mul-
tivariate outcomes, which may pose additional computational challenges.
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SUPPLEMENTARY MATERIAL

Supplementary material 1 (DOI: 10.1214/24-AOAS1944SUPPA; .zip). Code for the
simulation study and the SHREVE model using R package NIMBLE.

Supplementary material 2 (DOI: 10.1214/24-AOAS1944SUPPB; .pdf). Additional de-
tails and results for the simulation studies, sensitivity analyses, and analysis of AGPS data.
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