
1 23

Computational Statistics

ISSN 0943-4062
Volume 34
Number 1

Comput Stat (2019) 34:281-299
DOI 10.1007/s00180-018-00861-z

Neural network gradient Hamiltonian
Monte Carlo

Lingge Li, Andrew Holbrook, Babak
Shahbaba & Pierre Baldi

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Computational Statistics (2019) 34:281–299
https://doi.org/10.1007/s00180-018-00861-z

ORIG INAL PAPER

Neural network gradient Hamiltonian Monte Carlo

Lingge Li1 · Andrew Holbrook2 · Babak Shahbaba1 · Pierre Baldi1

Received: 26 November 2017 / Accepted: 15 December 2018 / Published online: 8 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Hamiltonian Monte Carlo is a widely used algorithm for sampling from posterior dis-
tributions of complex Bayesian models. It can efficiently explore high-dimensional
parameter spaces guided by simulated Hamiltonian flows. However, the algorithm
requires repeated gradient calculations, and these computations become increasingly
burdensome as data sets scale. We present a method to substantially reduce the com-
putation burden by using a neural network to approximate the gradient. First, we prove
that the proposed method still maintains convergence to the true distribution though
the approximated gradient no longer comes from a Hamiltonian system. Second, we
conduct experiments on synthetic examples and real data to validate the proposed
method.

Keywords Bayesian inference · MCMC · Neural networks

1 Introduction

Hamiltonian Monte Carlo (HMC) uses local geometric information provided by the
log-posterior gradient to explore the high posterior density regions of the parameter
space (Neal et al. 2011). Compared to the Metropolis–Hastings random walk algo-
rithm, HMC has high acceptance probability and low sample auto-correlation even
when the parameter space is high-dimensional. That said, the advantages of HMC
come at a computational cost that limits its application to smaller data sets. The gra-
dient calculation involves the entire data set and scales linearly with the number of
observations. As HMC needs to calculate the gradient multiple times within every

B Lingge Li
linggel@uci.edu

Andrew Holbrook
aholbroo@g.ucla.edu

1 Donald Bren School of Information and Computer Sciences, University of California, Irvine,
USA

2 Department of Human Genetics, David Geffen School of Medicine, University of California,
Los Angeles, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-018-00861-z&domain=pdf
http://orcid.org/0000-0002-0747-3711

282 L. Li et al.

single step, performing HMC on millions of observations requires an enormous com-
putational budget. Allowing HMC to scale to large data sets would help tackle the
double challenge of big data and big models.

There have been twomain approaches to scalingHMC to larger data sets. The first is
stochastic gradient HMC, which calculates the gradient on subsets of the data.Welling
and Teh (2011) implemented a stochastic gradient version of Langevin Dynamics,
which may be viewed as single-step HMC. Chen et al. (2014) introduced stochastic
gradient HMC with “friction” to counterbalance the inherently noisy gradient. How-
ever, these methods may not be optimal because subsampling substantially reduces
the acceptance probability of HMC (Betancourt 2015).

The second approach relies on a surrogate function, the gradient of which is less
expensive to calculate. Rasmussen et al. (2003), Lan et al. (2016) used Gaussian
process (GP) to produce satisfactory results in lower dimensions. However, training a
GP is itself computationally expensive and training points must be chosen with great
care. More recently, Zhang et al. (2015) implemented neural network surrogate with
random bases. It outperforms GP surrogate in their experiments but fails in parameter
spaces of moderate dimensionality.

In this paper, we develop a third approach, neural network gradient HMC
(NNgHMC), by using a neural network to directly approximate the gradient instead of
using it as a surrogate. We also train all the neural network weights through backprop-
agation rather than having random weights (Zhang et al. 2015). Compared to existing
methods, our proposed approach can emulate Hamiltonian flows accurately evenwhen
dimensionality increases. In Sect. 3, details of our method and proof of convergence
are presented. Section 4 includes experiments to validate our method and comparisons
with previous methods on synthetic and real data.

2 Background

2.1 HamiltonianMonte Carlo

Let x ∼ π(x |q) denote a probabilistic model with q as its corresponding parameter.
We also make q a random variable by giving the parameter a prior distribution π(q).
The integration constant of the posterior distribution

π(q|x) = π(x |q)π(q)
∫

π(x |q)π(q) dq
(1)

is usually analytically intractable, but the distribution can be numerically simulated
using MCMC. The Metropolis–Hastings algorithm constructs a Markov chain that
randomly proposes a new state q ′ from current state q based on transition distribution
g(q ′|q) and moves from q to q ′ with probability min{1, π(q ′|X)g(q|q ′)

π(q|X)g(q ′|q)
}. Unfortunately,

in a higher dimensional space, the probability of randomly moving to q ′ drops dra-
matically. Therefore, the MH algorithm has trouble exploring the posterior efficiently
in higher dimensions.

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 283

The idea of HMC is to explore a frictionless landscape induced by potential
energy function U and kinetic energy function K where potential energy U (q) =
− logπ(x |q)π(q) is proportional to the negative log posterior. HMC introduces an
auxiliary Gaussian momentum p, and K (p) is the negative log density of p. Potential
energy U tends to convert to kinetic energy K so q will likely move to a position
with higher posterior density. More formally, the Hamiltonian system is defined by
the following equations.

H(q, p) = U (q) + K (p) = −
(

logπ(q) +
N∑

i=1

logπ(xi |q)

)

+ 1

2
pT p, (2)

dq

dt
= ∂H

∂ p
= ∂K

∂ p
= p (3)

dp

dt
= −∂H

∂q
= −∂U

∂q
= ∇q

(

logπ(q) +
N∑

i=1

logπ(xi |q)

)

. (4)

In theory, convergence of HMC is guaranteed by the time reversibility of the Hamil-
tonian dynamics which, in turn, renders the Markov chain transitions reversible, thus
ensuring detailed balance. By conservation of the Hamiltonian, HMC has acceptance
probability 1 and can travel arbitrarily long trajectories along energy level contours.
In practice, the Hamiltonian dynamics is simulated with the leapfrog algorithm which
adds numerical errors. To ensure convergence to the posterior, a Metropolis correction
step is used at the end of each trajectory.

Within each simulated trajectory, the leapfrog algorithm iterates back and forth
between Eqs. (3) and (4), the latter of which features a summation over the log-
likelihood evaluated at each separate data point. For large data sets, this repeated
evaluation of the gradient becomes infeasible. In Sect. 3, we show how to greatly
speed up HMC using neural network approximations to this gradient term, but first
we introduce an important predecessor to our method, the surrogate HMC class of
algorithms.

2.2 Surrogate HMC

Two methods for approximating the log-posterior in the HMC context have already
been advanced. The first uses aGaussian Process regression tomodel the log-posterior,
the second uses a neural network. We refer to the latter as neural network surrogate
HMC (NNsHMC). It is natural that both models would be used in such a capacity:
Cybenko (1989) showed that neural networks can provide universal function approx-
imation, and Neal (2012) showed that certain probabilistic neural networks converge
to Gaussian processes as the number of hidden units goes to infinity. In this section,
we focus on NNsHMC, since it is more closely related to our method (Sect. 3).

NNsHMC approximates the potential energy U with a neural network surrogate
Û and uses ∇Û during leapfrog steps. The surrogate neural network has one hidden
layer with softplus activation:

123

Author's personal copy

284 L. Li et al.

Û (q) = W2 ln(1 + exp(W1q + b1)) + b1 (5)

where W1,W2 and b1, b2 are weight matrices and bias vectors, respectively. Under
this formulation, one can explicitly calculate the gradient

∇Û = WT
1 diag(W2)

1

1 + exp (−(W1q + b1))
(6)

and represent ∇Û with another neural network, which is just the backpropagation
graph of Û . Therefore, we can view neural network surrogate as using a constrained
network with tied weights and local connections to approximate the gradient.

For training the neural network, Zhang et al. (2015) uses extreme learning machine
(ELM) (Huang et al. 2004). ELM is a simple algorithm that randomly projects the input
to the hidden layer and only trains theweights from the hidden layer to the output. Ran-
domprojection iswidely used inmachine learning but backpropagation is the “default”
training method for most neural networks with its optimality theoretically explained
by Baldi and Sadowski (2016). Moreover, since the goal is to improve computational
efficiency, we want to make the surrogate neural network as small as possible. From
this point of view, large hidden layers often seen in ELMs are less than optimal.

3 Neural network gradient HMC

In contrast to previous work, NNgHMC does not use a surrogate function for U but
fits a neural network to approximate∇U directly with backpropagation. Training data
(q,∇U (q)) for the neural network are collected during the early period of HMC
shortly after convergence. Once the approximate gradient is learned, the algorithm is
exactly the same as classical HMC, but with neural network gradient̂∇U replacing
∇U . Details are given in Algorithm 1.

Algorithm 1 Neural network gradient HMC

Initialize q(0), leapfrog step number L and step size ε

for t = 1, 2, ..., T do
q0 = q(t−1)

Sample momentum p0 ∼ N (0, I)
p0 = p0 − ε

2
̂∇U (qt) � Leapfrog steps with approximated gradient̂∇U instead of ∇U

for i = 1, 2, ..., L do
qi = qi−1 + ε pi−1

pi = pi−1 − ε̂∇U (qi)
end for
pL = pL − ε

2
̂∇U (qL)

r = exp (H(qL , pL) − H(q0, p0)), u ∼ Uni f orm(0, 1)
if u < min(1, r) then � Metropolis accept/reject based on H = U + K

q(t) = qL
else

q(t) = q0
end if

end for

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 285

One benefit of our method occurs as early as the data collection process. Since we
approximate the gradient ∇U and not U , we can collect more training data faster:
surrogate HMC must reach the end of a leapfrog trajectory before obtaining a single
(functional evaluation) training sample; the same leapfrog trajectory renders a new
(gradient evaluation) training sample for each leapfrog step, and the number of such
steps in a single trajectory can range into the hundreds.

Suppose that there are N data points xn and that the parameter space is d-
dimensional. In this case, gradient calculations involve d partial derivatives

∂U

∂q j
= − ∂

∂q j
log

(

π(q)

N∏

i=1

π(xi |q)

)

= − ∂

∂q j
logπ(q) −

N∑

i=1

∂

∂q j
logπ(xi |q),

(7)

each of which involves a summation over the N data points. On the other hand,
performing a forward pass in a shallow neural network is proportional only to the
hidden layer size s � N . Once the neural network is trained on burn-in samples,
posterior sampling with approximated gradient is orders of magnitude faster.

Although the neural network gradient approximation ̂∇U (q) is not the same as
∇U (q), the method nonetheless samples from the true posterior. If one were able to
simulate the Hamiltonian system directly, i.e. without numerical integration, then all
the benefits of HMCwould be preserved in the limit, as the gradient field approximates
the true gradient field to arbitrary degree. On the other hand, the NNgHMC transi-
tion kernel—characterized by the approximate gradient leapfrog integrator combined
with the Metropolis accept-reject step—leaves the posterior distribution invariant. We
formalize the relevant results here and defer proofs to the appendix.

An important litmus test for the validity of our method is that it should leave the
Hamiltonian invariant in the limit as step-sizes and gradient approximation errors
approach zero. In turn, this result will imply high acceptance probabilities when the
system is simulated from numerically, and when gradient approximations are good.

Proposition 1 When the system induced by the approximate gradient field is simulated
directly, changes in the Hamiltonian H(q, p) = U (q)+K (p) converge in probability
to 0 as the approximate gradient converges pointwise to the true gradient. That is, for
a sequence of approximate gradient fields {̂∇n

qU }∞n=1 converging to the true gradient
field ∇qU, the change in Hamiltonian values satisfies

(
dH

dt

)

n
= op(1). (8)

Proof Following Cybenko (1989), assume we are able to construct a sequence of
approximate gradients ̂∇n

q H satisfying

∇q H = ̂∇n
q H + En(q), En(q) ∈ B1/n(0), (9)

123

Author's personal copy

286 L. Li et al.

where B1/n(0) is the ball around the origin of radius 1/n. In this case, the vector field
given by the approximate gradient induces a new system of equations:

dqi
dt

= ∂H

∂ pi
dpi
dt

= − ∂̂H

∂qi
. (10)

Then it follows that

dH

dt
=

d∑

i=1

[
dqi
dt

∂H

∂qi
+ dpi

dt

∂H

∂ pi

]

=
d∑

i=1

[
∂H

∂ pi

(
∂̂H

∂qi
+ En,i (q)

)

− ∂̂H

∂qi

∂H

∂ pi

]

=
d∑

i=1

∂H

∂ pi
En,i

= pT En ∼ N (0, ET
n En). (11)

This last line implies pT En is Op(
√
ET
n En), and hence that dH

dt is op(1). 	

We note that Proposition 1 is a local result, and that local deviations from the

true Hamiltonian flow will accrue to larger global deviations in general. While this
may seem disconcerting, NNgHMC maintains remarkably high acceptance rates in
practice. To help understand why this is the case, we present local and global error
analyses for the dynamics of the ordinary differential equation initial value problem

d

dt
z = f (z) , z(t0) = z0 ∈ R

k , (12)

approximated with function f̂ ≈ f . These results will then be related back to
NNgHMC by specifying z = (q, p) and

z = (q, p)T , f (q, p) =
(

p,−∂H

∂q

)T

, and f̂ (q, p) =
(

p,− ∂̂H

∂q

)T

. (13)

The general form of the following proofs follows after Sect. 2.1.2 of Leimkuhler and
Reich (2004).

Proposition 2 (Local error bounds) Let z0 = z(0) be the initial value, let z(Δt) be the
value of the exact, true trajectory after traveling for time Δt , and let z1 be the value of
the computed trajectory using Euler’s method applied to the approximated gradient
field. Finally, assume that the exact solution is twice continuously differentiable. Then
the local error ε1 = z(Δt) − z1 has the following bounds:

‖ε1‖ ≤ Δt δ + O(Δt2) , (14)

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 287

where δ = ‖ f (z0)− f̂ (z0)‖measures the difference between the true, exact trajectory
and the approximated trajectory at point z0.

Proof The proof follows from the Taylor expansion of both z(Δt) and z1:

ε1 =
(

z0 + Δt ż(0) + 1

2
Δt2 z̈(τ)

)

− (
z0 + Δt f̂ (z0)

)

= Δt
(
f (z0) − f̂ (z0)

) + 1

2
Δt2 z̈(τ) , (15)

where τ ∈ [0,Δt]. The result follows from the triangular inequality. 	

From the above result, it follows that the local error rate approaches the O(Δt2)

error rate of Euler’s method using the true gradient field as δ = ‖ f (z0) − f̂ (z0)‖ =
‖ ∂H

∂q (z0) − ∂̂H
∂q (z0)‖ goes to 0. The same approach can be used to obtain global error

bounds.

Proposition 3 (Global error bounds) We adopt the same notation as above with the
addition of the error at iteration n, εn = z(nΔt) − zn, where zn is the value after
n Euler updates using the approximate gradient field. Also, let tn = nΔt . Again we
assume that the exact solution is twice differentiable, and we further assume that it is
Lipschitz with constant L. Then the following bounds on εn hold:

‖εn‖ ≤
(
enΔt L − 1

) (
δ

L
+ O(Δt)

)

, for δ = max ‖ f (z(jΔt)) − f̂ (z j)‖ , (16)

and j = 0, . . . , n.

Proof The proof proceeds by recursion.Assume thatwe have obtained εn = z(tn)−zn .
Letting τ ∈ [tn, tn+1], a Taylor’s expansion gives:

εn+1 =
(

z(tn) + Δt ż(tn) + 1

2
Δt2 z̈(τ)

)

− (
zn + Δt f̂ (zn)

)

=
(

z(tn) + Δt f (z(tn)) + 1

2
Δt2 z̈(τ)

)

− (
zn + Δt f̂ (zn)

)

= (
z(tn) − zn

) + Δt
(
f (z(tn)) − f̂ (zn)

) + 1

2
Δt2 z̈(τ). (17)

But z̈ is continuous by assumption, so we can bound z̈ on the closed interval [tn, tn+1]
by a constant M . Furthermore, the Lipschitz assumption combined with the triangle
inequality give:

‖εn+1‖ ≤ ‖εn‖ + Δt
(‖ f (z(tn)) − f (zn)‖ + ‖ f (zn) − f̂ (zn)‖) + Δt2M

2

≤ (1 + Δt L)‖εn‖ + Δt δ + Δt2M

2
(18)

123

Author's personal copy

288 L. Li et al.

Next we make use of the following recursion relationship:

an+1 ≤ C an + D �⇒ an ≤ Cn a0 + Cn − 1

C − 1
D (19)

for C = (1 + Δt L) and D = Δt δ + Δt2M/2. Noting that a0 = ε0 = 0 gives

‖εn‖ ≤ (etn L − 1)

(
δ

L
+ ΔtM

2L

)

, (20)

and the result follows. 	

The above result suggests that the usual numerical error caused by a large Lipschitz
constant L can overpower the effects of gradient approximation error δ.

The preservation of volume entailed by both the theoretical Hamiltonian flow and
the leapfrog integrator is important for HMC. The latter fact implies there is no need
for Jacobian corrections within the accept-reject step. It turns out that the NNgHMC
dynamics also preserve volume, both for direct and for leapfrog simulation.

Lemma 1 Both for infinitesimal andfinite step sizes, theNNgHMCtrajectory preserves
volume.

Proof For the finite case, the leapfrog algorithm iterates between shear transformations
and so preserves volume (Neal et al. 2011). For the case of direct simulation, we use
the fact that the Hamiltonian vector field induced by the approximate gradient field
has zero divergence (Liouville’s Theorem). We use the notation of Proposition 1, but
drop the subscript n for the sake of readability:

d∑

i=1

[
∂

∂qi

dqi
dt

+ ∂

∂ pi

dpi
dt

]

=
d∑

i=1

[
∂

∂qi

∂H

∂ pi
− ∂

∂ pi

∂̂H

∂qi

]

=
d∑

i=1

[
∂

∂qi

∂H

∂ pi
− ∂

∂ pi

(
∂H

∂qi
− Ei

)]

=
d∑

i=1

∂

∂ pi
Ei = 0 . (21)

	

Not only does the NNgHMC trajectory preserve volume, it is reversible as well.

This easy fact is shown in the proof of Proposition 2.

Theorem 1 The NNgHMC transition kernel leaves the canonical distribution
exp{−H(q, p)} invariant.
Proof Since leapfrog integration preserves volume and since the Metropolis accep-
tance probability is the same as for classical HMC, all we need to show is that

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 289

the leapfrog integration is reversible. This fact follows in the exact same way
as for HMC, despite the use of an approximate gradient field to generate the
dynamics:

pi (t + ε/2) = pi (t) − (ε/2)
∂̂U

∂qi
(q(t))

qi (t + ε) = qi (t) + ε pi (t + ε/2)

pi (t + ε) = pi (t + ε/2) − (ε/2)
∂̂U

∂qi
(q(t + ε)) . (22)

These are the same equations as in Neal et al. (2011) except with ∂̂U
∂qi

replacing ∂U
∂qi

.
Hence, the NNgHMC leapfrog equations are symmetric and thus reversible: to reverse
a sequence of leapfrog dynamics, negate p, take the same number of steps, and negate
p again. It follows that the NNgHMC transition kernel leaves the canonical distribu-
tion invariant and is an asymptotically exact method for sampling from the posterior
distribution. 	

Regardless of the accuracy of neural network gradient approximation, following
the leapfrog simulated Hamiltonian proposal scheme would recover the true poste-
rior distribution when combined with Metropolis–Hastings correction. If the gradient
approximation is “bad,” NNgHMC would break down to a random walk algorithm.
If the gradient approximation is “close enough,” NNgHMC would behave just like
standard HMC, operating on energy level contours at a fraction of the computation
cost. The neural network gradient approximation can be controlled with two tuning
parameters: hidden layer size h and training time t , in addition to leapfrog steps l
and step size s. The neural network architecture is fixed to have one hidden layer and
the number of units has to be pre-determined. Neural network training time can be
either set to some number of epochs or dependent on a stopping criterion (typically
based on change in loss function between epochs). Since there is no noise (error) in
the gradient, overfitting is not a concern; the hidden layer size and training time could
be relatively large.

Given sufficient training data, the neural network will be able to accurately approx-
imate the gradient field. The important question is: how much training data should be
collected? To address this, we propose a training schedule that consists of a start point,
an end point, and a rate for gradient data collection. For example, one may wish to run
a HMC chain to draw 5000 samples in total. A training schedule could be training the
neural network every 200 draws between the 400th and 1000th draws. After the neural
network is trained each time, one would use the approximated gradient to sample for
some iterations. If the acceptance probability is similar to that of standard HMC, one
would stop the training schedule and complete the entire chain with NNgHMC. Oth-
erwise, standard HMC would be used to sample the remaining draws. Since training
the neural network and using it to sample is much cheaper computationally compared
to standard HMC, the training schedule would add little overhead even if the neural
network gradient approximation fails (Fig. 1).

123

Author's personal copy

290 L. Li et al.

Fig. 1 After the neural network learns an accurate gradient approximation, the computation cost of sampling
is substantially reduced compared to standard HMC. Therefore, the benefit of neural network gradient HMC
depends on how much training data is enough for the neural network. Using a training schedule, we would
stop standard HMC immediately after the neural network has learned from enough data

4 Experiments

In this section,we demonstrate themerits of proposedmethod: accuracy and scalability
through a variety of experiments. The accuracy of gradient approximation can be
reflected by high acceptance probability that is similar to standard HMC using the true
gradient. Compared to draws from stochastic gradient HMC, the draws using proposed
method are much more similar to standard HMC draws. Scalability means better
performance when both data size n and dimensionality p increase. The performance
metric is effective sample size (ESS) adjusted by CPU time. ESS estimates the number
of “independent” samples by factoring ρ(k) correlation between samples at lag k into
account:

ESS = n

1 + 2
∑∞

k=1 ρ(k)
.

The previous surrogate approach fails when p reaches 40 while the proposed method
works well up to p = 200. Lastly, speed evaluation is done on three real data sets
and the proposed method consistently beats standard HMC even when the time to
collect training data and train the neural network is included.Our proposedNNgHMC
method is implemented in Keras and uses the default Adam optimizer (Kingma and Ba
2014) during training. All experiments are performed on a 3.4 GHz Intel Quad-Core
CPU and our code is available at: https://github.com/modestbayes/hamiltonian.

4.1 Distributions with challenging gradient fields

The banana shaped distribution in two dimensions can be sampled using the fol-
lowing un-normalized density

f (x1, x2) ∝ exp− (Ax1)2

200
− 1

2
(Cx2 + B(Ax1)

2 − 100B)2 (23)

123

Author's personal copy

https://github.com/modestbayes/hamiltonian

Neural network gradient Hamiltonian Monte Carlo 291

Fig. 2 Gradient fields, samples, and leapfrog trajectories using standard HMC (left) and NNgHMC (right)
are indistinguishable

where A,C control the scale in x1, x2-space and B determines the curvature. For
HMC, the energy function is set to be − log f (x1, x2) and the its gradient can be
easily calculated. Using leapfrog steps l = 5 and step size s = 0.1, standard HMC is
used to sample 5000 drawswith acceptance probability 0.58. Gradient values collected
during the first 1000 draws are then used to train a neural network with hidden layer
size h = 100 for t = 50 epochs. With the same tuning parameters, NNgHMC is used
to sample 5000 draws with acceptance probability 0.57. Figure 2 compares standard
HMC and NNgHMC draws, the true and approximated gradient fields, and two long
simulated leapfrog trajectories using both. The neural network learns the distorted
gradient field accurately and NNgHMC completely recovers the banana shape.

Next, we illustrate the proposed method on a multivariate Gaussian distribution
with ill-conditioned covariance. The distribution is given by q ∼ N30(0,) where
	 is a diagonal matrix with smallest value 0.1, largest value 1000 and other values
uniformly drawn between 1 and 100. As the distribution is on very disparate scales in
different dimensions, HMC needs accurate gradient information to move accordingly.
For HMC, the leapfrog step size s is set to be 0.5 and the number of steps l is set to
be 100 so that acceptance probability is around 0.7. If the step size is too big, HMC
would miss the high density region in the narrowest dimension. Without a sufficiently
long trajectory, HMCwould fail to explore the elongated tails in the widest dimension.

We collect sample gradients until 50 iterations after convergence to train the neural
network. The neural network has h = 100 units in the hidden layer and is trained for
t = 10 epochs. With the same tuning parameters as standard HMC, NNgHMC has
acceptance probability around 0.5. Despite slightly lower acceptance probability, as
shown in Fig. 3, NNgHMC converges to the true posterior just as standard HMC.With
more training data, the neural network will learn the gradient field more accurately
and NNgHMC will have similar acceptance probability as standard HMC.

4.2 200-dimensional Bayesian logistic regression

Next we demonstrate the scalability of proposed method on logistic regression
with simulated data. The X matrix has 50,000 rows drawn from a 200 dimen-

123

Author's personal copy

292 L. Li et al.

−1

0

1

−100 −50 0 50 100

−1

0

1

−100 −50 0 50 100

Fig. 3 NNgHMC posterior (bottom) captures the highly elongated shape of the Gaussian distribution in the
two most extreme dimensions (σ 2

1 = 0.1, σ 2
30 = 1000) as well as the HMC posterior (top). Note that the

x- and y-axes are on very different scales

sional multivariate Gaussian distribution with mean zero and covariance I200. The
regression coefficients β are drawn independently from Uni f (−1, 1). Given X
and β, the response vector is created with Yi ∼ Bern(logistic(Xiβ)). With
l = 20 leapfrog steps and step size s = 0.01, HMC makes 1000 draws in 300
seconds with acceptance probability around 0.8. 4000 training points and gradi-
ents, which come from 200 draws after convergence, are used for neural network
training.

With the same tuning parameters, NNgHMC can make 1000 draws in just 40
seconds with acceptance probability around 0.6. HMC yields 1.5 effective samples
per second while NNgHMC yields 6.75 effective draws per second on average. The
improvement on effective sample size and CPU time ratio is considerable and will
only increase as the size of the data set increases.

The choice of prior plays an important role in Bayesian inference, and it is common
to fit models with different priors for sensitivity analysis. The gradient of energy func-
tion ∇U is equal to the sum of the gradient of negative log-likelihood −∇ logπ(x |q)

and the gradient of log prior∇ logπ(q). As the proposed method provides an accurate
approximation of ∇U under prior π(q), adding ∇ logπ ′(q) − ∇ logπ(q) will yield
an approximation of ∇U under a new prior π ′(q). In this case, NNgHMC can sample
from the new posterior much faster than HMC without additional training. Figure 4
compares the NNgHMC and HMC posteriors.

Remark 1 While there are no fixed rules on the size of hidden layers, non-generative
models typically have larger hidden layers than output layers. With input and output
dimensions both being 200, a large hidden layer of size 400 would lead to 160,000
total units, which is computationally expensive. Meanwhile, a network with a hidden
layer of size 200 has half as many total units but is not nearly as expressive. Here we
use eight disjoint hidden layers of size 50 to approximate 25 dimensional blocks of
the gradient to cut down the number of total units to 90,000. Figure 5 compares the
training losses of these three networks.

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 293

Fig. 4 We first use HMC to collect training samples from the posterior of the 200-dimensional logistic
regression model under a diffused prior with variance 10 for NNgHMC. The HMC (left) and NNgHMC
(right) posteriors are drawn with dashed lines. Then we use the same trained network for NNgHMC under
a concentrated prior with variance 0.1. The new HMC and NNgHMC posteriors are drawn with solid lines.
Although most of the training data come from the dashed region, the neural network can extrapolate well
to sample around the solid region

Fig. 5 The gradient of the
200-dimensional logistic
regression model is
approximated by neural
networks of different designs. In
terms of performance measured
by training L2 loss on the true
gradient, the block network
(dashed line) matches the single
large network (dotted line) and
outperforms the single small
network (solid line) using
comparable number of total units

4.3 Low-dimensional models with expensive gradients

In this section, we evaluate our method using two models that involve costly gradient
evaluations in spite of their typically low dimensions. First, we focus on the general-
ized autoregressive conditional heteroskedasticity (GARCH), which is a common
econometric model that models the variance at time t as a function of previous obser-
vations and variances. The general GARCH(m, r) model is given by

yt ∼ N (0, σ 2
t) (24)

σ 2
t = α0 +

m∑

j=1

α j y
2
t− j +

r∑

j=1

β jσ
2
t− j . (25)

Conditioning on the first max(m, r) observations, the likelihood is the product of
N (0, σ 2

t) densities. The likelihood and gradient calculation for GARCH models can
be slow as it has to be done iteratively and scales with the number of observations. As

123

Author's personal copy

294 L. Li et al.

Fig. 6 Time series data generated with a GARCH(2, 1) model

Table 1 Comparing standard HMC and NNgHMC using a GARCH model

Method AP ESS CPU time Median ESS/s Speed-up

Standard 0.72 (99, 261, 424) 436s 0.60 1

NNg 0.70 (116, 176, 303) 59s 2.98 4.98

AP acceptance probability, ESS effective sample size (min, median, max) after removing 10% burn-in

shown in Fig. 6, 1000 observations are generated with a GARCH(2, 1) model and
used as data for comparing standard HMC and NNgHMC. Truncated uninformative
Gaussian priors are used because of GARCH stationarity constraints. 10,000 draws
are taken with standard HMC and gradient values collected between 1000 to 2000
iterations are used for training. Training a neural network with hidden layer size 50
takes 5s.With tuning parameters fixed at step size s = 0.002 and l = 15 leapfrog steps,
standard HMC and NN gradient HMC both have close to 0.7 acceptance probability,
but the latter is more computationally efficient (Table 1).

Gaussian process is computationally expensive because the covariance matrix is
n × n and inverting it requires O(n3) computation. Here we consider a Gaussian
process regression model with the Matérn kernel:

Y ∼ N (0,K(X , X)) (26)

K(d) = 21−ν

�(ν)

(√
2ν

d

l

)ν

Kν

(√
2ν

d

l

)

(27)

where d is the Euclidean distance between two observations x and x ′, length scale
l and smoothness ν are the hyper-parameters. � denotes the gamma function and
Kν is the modified Bessel function of the second kind. Here ν is fixed at 1.5 to
limit Gaussian process draws to be once differentiable functions. It is common to
add white noise σ 2 I to the covariance matrix for numerical stability. Therefore, the
second free hyper-parameters besides l is σ 2. Diffused Lognormal priors are used for
the hyperparameters. The 500× 4 data matrix X is drawn fromMultivariate Gaussian
withmean zero and identity covariance.Y is obtained bymapping X with a polynomial
pattern and adding noise.

10,000 draws are sampled using standard HMCwith leapfrog steps l = 20 and step
size s = 0.05; the acceptance probability is 0.83 but it is very time consuming.Gradient
collected during the first 1000 draws is then used to train a neural network with hidden
layer size h = 100 for t = 100 epochs. Using the same tuning parameters, NNgHMC

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 295

Table 2 Experiment results using Gaussian process regression model

Method AP ESS CPU time Median ESS/s Speed-up

Standard 0.83 (5135, 5754, 7635) 1834s 3.14 1

NNg 0.84 (4606, 6172, 7741) 50s 123.4 39.3

AP acceptance probability, ESS effective sample size (min, median, max) after removing 10% burn-in

Fig. 7 GP regressionmodel posteriors of hyper-parameters using standardHMC (left) andNNgHMCdraws
(right)

Fig. 8 GP regression model predictions with standard HMC (left) and NNgHMC posteriors (right)

can sample 10,000 draws in much shorter time with the same acceptance probability
(Table 2). Figure 7 compares the standard HMC and NNgHMC posteriors; Fig. 8
compares Gaussian process model posterior draws along one particular direction.

4.4 Comparison with stochastic gradient HMC

Naïve stochastic gradient HMC using mini-batches of data is problematic as the noisy
gradient can push the sampler away from the target region. Recent more advanced
stochastic gradient method uses a friction term and is shown to sample from the true
posterior asymptotically. The formulation of SGHMC is given by:

dθ = M−1rdt (28)

dr = −∇U (θ)dt − BM−1rdt + N (0, 2Bdt) (29)

where N (0, 2Bdt) is the noise added to the gradient by subsampling. In practice, the
friction term BM−1rdt is set arbitrarily.

123

Author's personal copy

296 L. Li et al.

Fig. 9 Histograms of marginal posteriors of logistic regression model coefficients with Laplace prior on
Cover Type data. Solid line: standard HMC; dashed line: stochastic gradient HMC; dotted line: neural
network gradient HMC

Table 3 Experiment results on Cover Type data

Method AP ESS CPU time Median ESS/s Speed-up

Standard 0.80 (73, 143, 10,000) 3147s 0.05 1

NNg 0.67 (57, 186, 7174) 710s 0.26 5.77

SG 0.33 (49, 59, 246) 357s 0.17 3.64

AP acceptance probability, ESS effective sample size (min, median, max) after removing 10% burn-in

To further improve speed, SGHMC does not perform Metropolis–Hastings correc-
tion and uses very small step sizes. The SGHMC posterior is dependent on the choice
of step size; however, a priori one would not know the optimal step size. Here we
want to show that while SGHMC provides fast approximation of the true posterior
when data are abundant, the SGHMC posterior may not be suitable for inference.

In our experiment, the Cover Type data from UCI machine learning repository is
used. We run standard HMC for 4000 iterations with l = 50 leapfrog steps and step
size s = 0.002. We also run SGHMC for 4000 iterations with default parameters and
varying step sizes from s = 5e − 6 to s = 5e − 8.

Figure 9 illustrates the main issue with SGHMC. For these two marginal distribu-
tions, the SGHMC posteriors have roughly the same location but completely different
shapes. On the other hand, NNgHMC posteriors agree with the standard HMC poste-
riors almost exactly.

Another comparison with SGHMC is performed with Metropolis–Hastings correc-
tion. Here the sub-sampled data size is 5000 and the tuning parameters are l = 10
leapfrog steps and step size s = 0.001 so that the simulated trajectory is shorter for
less gradient noise to compound. While SGHMC is faster still, the quality of samples
is inferior compared to proposed method as indicated by lower ESS in Table 3 and less
mixed trace plot in Fig. 10. Overall, NNgHMC still outperforms SGHMC in terms of
median EES per second.

4.5 Comparison with Gaussian process surrogate

We now compare our method to the Gaussian process surrogate approach with the

squared exponential kernel parametrized by K(x, x ′) = exp− (x−x ′)2
2l2

. We also add

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 297

Fig. 10 Trace plots of NNgHMC (top) and stochastic gradient HMC (below) show that the NNgHMC chain
is more efficient as the approximated gradient is more accurate than sub-sampled gradient

Table 4 Acceptance probability
when sampling from
multivariate Gaussian

Method Dimension/training 500 1000 2000

Gaussian process 10 0.65 0.61 0.57

20 0.64 0.65 0.62

40 0.31 0.32 0.32

Neural network gradient 10 0.95 0.96 0.97

20 0.82 0.87 0.91

40 0.61 0.75 0.87

white noise σ 2 I to the covariance matrix. The squared exponential kernel, the default
choice, is infinitely differentiable and gives rise to another Gaussian process as the
derivative. Given observations X and Y , we can explicitly write down the mean of the
derivative at x∗.

E
∂ f

∂x∗ = ∂

∂x∗ E f = ∂

∂x∗K(x∗, X)K(X , X)−1Y (30)

Here we estimate both the length scale l in the squared exponential kernel and the
white noise parameter σ jointly with maximum likelihood. The estimation requires
inverting the observed covariance matrix, which is O(n3) where n is the number of
observations.

We compare with GP surrogate method on multivariate Gaussian distributions with
covariance Id where d varies from 10 to 40. For each Gaussian, we generate n training
data points to train the GP surrogate and neural network. The neural network has 100
hidden units and is trained for 10 epochs. After training, both methods are used to
draw 1000 samples.

Table 4 compares acceptance probability for the two methods. We can see that
the neural network predicted gradient provides better approximation overall than the
gradient of GP as indicated by higher acceptance probability. This advantage is more
pronounced as dimensionality increases.

123

Author's personal copy

298 L. Li et al.

Table 5 Experiment results on data sets from UCI machine learning repository

Method AP ESS CPU time Median ESS/s Speed-up

Online news popularity (39,797 × 44)

Standard 0.77 (777, 2021, 5929) 3607s 0.66 1

NNg (10%) 0.61 (605, 1416, 4865) 502s 2.82 4.27

NNg (15%) 0.64 (620, 1382, 5500) 678s 2.04 3.09

NNg (20%) 0.68 (700, 1731, 5397) 854s 2.03 3.08

Census income (48,842 × 123)

Standard 0.84 (6306, 9390, 10,000) 1796s 5.23 1

NNg (10%) 0.60 (4023, 6024, 7156) 564s 10.68 2.04

NNg (15%) 0.68 (4617, 7511, 9201) 656s 11.45 2.19

NNg (20%) 0.76 (5036, 7558, 8696) 740s 10.21 1.95

Dota2 games results (102,944 × 116)

Standard 0.75 (1677, 5519, 8621) 20760s 0.27 1

NNg (10%) 0.59 (1446, 4197, 6442) 2903s 1.45 5.44

NNg (15%) 0.70 (1901, 4865, 7600) 3911s 1.24 4.59

NNg (20%) 0.74 (2432, 5744, 8860) 4992s 1.15 4.26

AP acceptance probability, ESS effective sample size (min, median, max) after removing 10% burn-in

4.6 Speed evaluation on real data

Similar to other surrogate methods, NNgHMC has three stages: training data col-
lection, training, and sampling. We have demonstrated that using a neural network
can provide accurate approximation of the gradient, however, the effectiveness of our
method still needs to be evaluated by time. If the neural network requires too much
training data, then it would not reduce computation time. Here we first run standard
HMC to draw a desired number of samples (10,000) and record time as benchmark.
Then we collect different amounts of training data points (10%, 15% and 20% of total
number) and use NNgHMC to draw remaining samples. The time to collect training
data and train the neural network is included for NNgHMC. As shown in Table 5,
10% of training data is sufficient for the neural network to learn the gradient and gives
the most speed-up. While adding more training data increases the quality of gradi-
ent approximation, the computation cost outweighs the benefit of higher acceptance
probability.

5 Discussion

Whereas HMC is helpful for computing large Bayesian models, its repeated gradient
evaluations become overly costly for big data analysis. We have presented a method
that circumvents the costly gradient evaluations, not by subsampling data batches but
by learning an approximate gradient that is functionally free of the data. We find that
multi-output, feedforward neural networks are ripe for this application: NNgHMC is
able to handle models of comparatively large dimensionality.

123

Author's personal copy

Neural network gradient Hamiltonian Monte Carlo 299

The NNgHMC algorithm is an important paradigm shift away from the class of
surrogate function approximate HMC algorithms, but this shift leaves many open
questions. Much work is needed to extend NNgHMC to an on-line, adaptive method-
ology: what measures of approximation error will be useful criteria for ending the
training regime of the algorithm, and are there benefits to iterating between training
and sampling regimes? Are there any valid second-order extensions to the NNgHMC
algorithm à la Riemannian HMC? Finally—andmost interestingly—can the represen-
tational power of deep neural networks be leveraged for more accurate approximations
to the Hamiltonian flow?

Acknowledgements Babak Shahbaba is supported by NSF Grant DMS1622490 and NIH Grant
R01MH115697.

References

Baldi P, Sadowski P (2016) A theory of local learning, the learning channel, and the optimality of back-
propagation. Neural Netw 83:51–74

Betancourt M (2015) The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling.
arXiv preprint arXiv:1502.01510

ChenT, FoxE,GuestrinC (2014) Stochastic gradientHamiltonianMonteCarlo. In: International conference
on machine learning, pp 1683–1691

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst
(MCSS) 2(4):303–314

Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward
neural networks. In: Proceedings of IEEE international joint conference on neural networks, IEEE,
vol 2, pp 985–990

Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
Lan S, Bui-Thanh T, Christie M, Girolami M (2016) Emulation of higher-order tensors in manifold monte

carlo methods for bayesian inverse problems. J Comput Phys 308:81–101
Leimkuhler B, Reich S (2004) Simulating Hamiltonian dynamics, vol 14. Cambridge University Press,

Cambridge
Neal RM (2012) Bayesian learning for neural networks, vol 118. Springer, New York
NealRMet al (2011)McmcusingHamiltonian dynamics.HandbookMarkovChainMonteCarlo 2:113–162
RasmussenCE,Bernardo J, BayarriM,Berger J, DawidA,HeckermanD, SmithA,WestM (2003)Gaussian

processes to speed up hybrid monte carlo for expensive bayesian integrals. Bayesian Stat 7:651–659
Welling M, Teh YW (2011) Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings

of the 28th international conference on machine learning (ICML-11), pp 681–688
Zhang C, Shahbaba B, Zhao H (2017) Hamiltonian monte carlo acceleration using surrogate functions with

random bases. Stat Comput 27:1473. https://doi.org/10.1007/s11222-016-9699-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Author's personal copy

http://arxiv.org/abs/1502.01510
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s11222-016-9699-1

	Neural network gradient Hamiltonian Monte Carlo
	Abstract
	1 Introduction
	2 Background
	2.1 Hamiltonian Monte Carlo
	2.2 Surrogate HMC

	3 Neural network gradient HMC
	4 Experiments
	4.1 Distributions with challenging gradient fields
	4.2 200-dimensional Bayesian logistic regression
	4.3 Low-dimensional models with expensive gradients
	4.4 Comparison with stochastic gradient HMC
	4.5 Comparison with Gaussian process surrogate
	4.6 Speed evaluation on real data

	5 Discussion
	Acknowledgements
	References

