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A class of derivatives is defined for the pseudo determinant 
Det(A) of a Hermitian matrix A. This class is shown to be non-
empty and to have a unique, canonical member ∇Det(A) =
Det(A)A+, where A+ is the Moore–Penrose pseudo inverse. 
The classic identity for the gradient of the determinant is thus 
reproduced. Examples are provided, including the maximum 
likelihood problem for the rank-deficient covariance matrix of 
the degenerate multivariate Gaussian distribution.
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1. Introduction

We derive the class of derivatives of the pseudo determinant with respect to Hermi-
tian matrices, placing an emphasis on understanding the forms taken by this class and 
their relationship to established results in linear algebra. In particular, care must be 
taken to address the discontinuous nature of the pseudo derivative. The contributions in 
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this paper are primarily of a linear algebraic nature but are well motivated in fields of 
application.

The pseudo determinant arises in graph theory within Kirchoff’s matrix tree theorem 
[1] and in statistics, in the definition of the degenerate Gaussian distribution. The degen-
erate Gaussian has been useful in image segmentation [2], communications [3], and as the 
asymptotic distribution for multinomial samples [4]. Despite these appearances, knowl-
edge of how to differentiate the distribution’s density function is conspicuously absent 
from the literature, and—since differentiation is often essential for maximization—the 
lack of this knowledge is a plausible barrier to the distribution’s wider use.

Specifically, to obtain the maximum likelihood (ML) estimator for the singular co-
variance matrix of the degenerate Gaussian, one must be able to calculate the derivative 
of the log likelihood and hence the pseudo determinant of the covariance. Although [5]
firmly establishes the subject of ML estimation for multivariate Gaussians, the authors 
never directly address singular covariance estimation. This problem is explored in Sec-
tion 3. In Section 2, the pseudo determinant is introduced, and its derivative with respect 
to Hermitian matrices is derived.

2. The canonical derivative

We begin by introducing the pseudo determinant both as a product of eigenvalues 
and as a limiting form.

Definition 2.1. The pseudo determinant Det of a square matrix A is defined as the prod-
uct of its non-zero eigenvalues. If a matrix has no non-zero eigenvalues, then we say 
Det(0) = 1.

See [1] for an equivalent definition of the pseudo determinant in terms of the char-
acteristic polynomial. In deriving its derivative, it will be useful to write the pseudo 
determinant as a limit.

Proposition 2.2. If A is an n × n matrix of rank k, then Det(A) is the limit

Det(A) = lim
δ→0

det(A + δI)
δn−k

(2.1)

for det(·) the regular determinant.

Whereas this result is known [6], we were unable to find its proof, so it is given here 
in the spirit of completeness.

Proof. We use the identity

det(X + ZY Z∗) = det(Y −1 + Z∗X−1Z) det(Y ) det(X) . (2.2)
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Replacing X with k In and letting A = UΛU∗ = ZY Z∗, we have

lim
δ→0

det(A + δI)
δn−k

= lim
δ→0

kn

kn−r
det(Λ−1 + 1

k
Ir) det(Λ) (2.3)

= Det(A) lim
k→0

kr det(Λ−1 + 1
k
Ir)

= Det(A) lim
k→0

det(kΛ−1 + Ir)

= Det(A) . �
Next, we define the Moore–Penrose pseudo inverse [7], an important object involved 

in the derivative of the pseudo determinant.

Definition 2.3. The pseudo inverse A+ of a matrix A is also defined in terms of a limit:

A+ = lim
δ→0

A∗(AA∗ + δI)−1 = lim
δ→0

(A∗A + δI)−1A∗ . (2.4)

A+ exists in general and is unique. It may also be defined as the matrix satisfying all 
the following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)∗ = AA+

4. (A+A)∗ = A+A

For Hermitian matrices, the pseudo inverse is obtained by inverting the matrix eigenval-
ues.

As is the case for the pseudo inverse [7], the pseudo determinant is discontinuous. For 
an example, consider the two matrices

A =
(

1 0
0 0

)
, and Bj =

(
0 0
0 j

)
. (2.5)

Note that Det(A) = 1 and Det(A + Bj) = j, but that

lim
j→0

Det(A + Bj) = 0 �= 1 = Det(lim
j→0

A + Bj) . (2.6)

As one might gather from this example, the pseudo determinant is discontinuous between 
sets of matrices of differing ranks. This discontinuity will effect the way we define the 
derivative of the pseudo determinant. We now turn to deriving this derivative.

For matrix A in the space of n ×n matrices Mn×n, the matrix derivative of a function 
h : Mn×n → R is given by the matrix ∇h(A) satisfying
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∇Bh(A) = tr
(
B∇h(A)

)
= lim

τ→0

h(A + τB) − h(A)
τ

(2.7)

for any matrix B ∈ Mn×n, where ∇Bh(A) is the directional derivative. We use the 
directional derivative to define the derivative of the pseudo determinant, but, on account 
of the discontinuity of the pseudo determinant, we must restrict the directions B in which 
the directional derivative is defined. For this reason, we may define the derivative at a 
point only in certain directions and must modify the common definition of the directional 
derivative.

Definition 2.4. (Definition 1) For a matrix A in the space of Hermitian n × n, rank k
matrices Mk

n×n, the directional derivative ∇B Det(A) of the pseudo determinant Det :
Mn×n → R is defined in directions B ∈ Mk

n×n that share the same kernel as A, i.e. 
for which Ker(A) = Ker(B). Then the derivative ∇ Det(A) is given by any matrix 
satisfying

∇B Det(A) = tr
(
B∇Det(A)

)
= lim

τ→0

Det(A + τB) − Det(A)
τ

. (2.8)

Note that, according to this definition, ∇ Det(A) is not unique, since it can take on 
different values along the kernel of B. This non-uniqueness can also be seen using the 
following class equations for the class of derivatives ∇ Det(A) of the pseudo determinant 
at a matrix A.

Definition 2.5. (Definition 2) A derivative of the pseudo determinant at a point A ∈
Mk

n×n is any non-zero matrix ∇ Det(A) ∈ Mk
n×n satisfying

A∇Det(A) = AA+ Det(A) (2.9)

∇Det(A)A = A+A Det(A) . (2.10)

We demonstrate that this is a natural definition using the facts that A(A2)+ = A+

and (A2)+A = A+ for any Hermitian A and assuming one may interchange limits:

A1/2∇Det(A) = A1/2∇ lim
δ→0

det(A + δI)
δn−k

(2.11)

= A1/2 lim
δ→0

1
δn−k

∇ det(A + δI)

= Det(A) lim
δ→0

A1/2(A + δI)−1

= Det(A) (A1/2)+

= Det(A)A1/2A+ .

Multiplying both sides by A1/2 and rearranging gives the first class equation. The deriva-
tion of the second equation is symmetric. We illustrate the preceding definitions—and 
that they do not define unique derivatives—with a few examples.
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Example 2.6. Consider the 2 × 2 matrix

A =
(
a 0
0 0

)
. (2.12)

It is clear that Det(A) = a and A+ is obtained by taking the reciprocal of the first 
element of A. The above result renders

A∇Det(A) = aAA+ =
(
a 0
0 0

)
= aA+A = A∇Det(A) . (2.13)

Note that multiple matrices solve this equation. Two examples are the identity and the 
matrix A/a.

Example 2.7. Now consider the 2 × 2 matrix pair

A =
(

1 1
1 1

)
, A+ =

(
.25 .25
.25 .25

)
. (2.14)

One can check that Det(A) = 2. Then it follows from the result that

A∇Det(A) = 2AA+ = 2 1
2A = A = · · · = ∇Det(A)A . (2.15)

Again, multiple matrices satisfy Equation (2.15): take for example

(
1 0
0 1

)
and

(
.5 .5
.5 .5

)
. (2.16)

It turns out that the matrix A in the class equations of Definition (2.5) may be 
replaced by any Hermitian B such that Ker(B) = Ker(A). This is easily shown using 
the fact that BA+A = B = BAA+ = B = A+AB = B = AA+B for any such B.

Proposition 2.8. The derivative of the pseudo determinant is any matrix ∇ Det(A) sat-
isfying the equations

B∇Det(A) = BA+ Det(A) (2.17)

∇Det(A)B = A+B Det(A) , (2.18)

for any matrix B for which Ker(B) = Ker(A).

This result may be combined with the directional derivative based definition of 
∇ Det(A).
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Proposition 2.9. The derivative of the pseudo determinant is any matrix ∇ Det(A) sat-
isfying the equations

tr
(
B∇Det(A)

)
= Det(A) tr(BA+), (2.19)

for any matrix B for which Ker(B) = Ker(A).

In practice, one may obtain the canonical element ∇Det(A) of class ∇ Det(A) directly 
from a corollary to the following Pythagorean theorem.

Theorem 2.10. (Knill 2014 [1]) For Hermitian A of rank k,

Det2(A) = Det(A2) =
∑
P

det2(AP ) (2.20)

where P indexes all k × k minors of A satisfying det(AP ) �= 0.

As a corollary, the canonical gradient ∇Det is directly obtainable.

Corollary 2.11. For Hermitian A of rank k, one has

∇Det(A) = 1
Det(A)

∑
P

det2(AP )A−1
P =

∑
P det2(AP )A−1

P√∑
P det2(AP )

:= ∇Det(A) . (2.21)

This ∇Det(A) satisfies the class equations as well as Equation (2.19). Before proving 
this claim, we illustrate by revisiting our examples.

Example 2.12. We again consider matrix

A =
(
a 0
0 0

)
. (2.22)

This time we use Formula (2.21). Here, the rank k minors are simply the elements of A. 
Since only the first element is non-zero, we have

∇Det(A) = det2(A11)A−1
11

Det(A) = a2

a

(
a−1 0
0 0

)
=

(
1 0
0 0

)
. (2.23)

This, of course, agrees with the original example.

Example 2.13. Again, consider the matrix

A =
(

1 1
1 1

)
. (2.24)
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The gradient of the pseudo determinant may be found using Formula (2.21):

∇Det(A) = 1
2
∑
ij

det2(Aij)A−1
ij = 1

2A . (2.25)

The reader may check that

A∇Det(A) = 1
2A

2 = A = · · · = ∇Det(A)A , (2.26)

as expected from Equation (2.15).

The above examples suggest that ∇Det(A) should satisfy the class equations in gen-
eral. To show this, we first cite a result.

Theorem 2.14. (Berg 1986 [8]) The pseudo inverse of a Hermitian, rank k matrix A
takes the following form:

A+ =
∑

P det2(AP )A−1
P

Det2(A)
=

∑
P det2(AP )A−1

P∑
P det2(AP )

. (2.27)

Theorem 2.15.

∇Det(A) = Det(A)A+ (2.28)

Thus ∇Det(A) satisfies the class equations and belongs to the equivalence class 
∇ Det(A). Moreover, ∇Det(A) is the unique member of the equivalence class that has 
the same kernel as A. In this sense, it may be considered the canonical gradient of the 
pseudo determinant.

Proof. That ∇Det(A) = Det(A)A+ is a simple result of Corollary 2.11 and Theo-
rem 2.14. As a result, it immediately satisfies the two propositions as well.

We now consider the uniqueness claim. In general, A : Ker(A)⊥ → Im(A) is an 
isomorphism, and A : Im(A) → Ker(A)⊥ is its inverse. Since A is Hermitian, Ker(A) ⊕
Im(A) = C

n, and so A : Im(A) → Im(A), A+ : Im(A) → Im(A) is the isomorphism 
pair. Clearly Ker(A) = Ker(A+), and so Ker

(
∇Det(A)

)
= Ker(A).

We proceed by contradiction. Suppose that there exists another matrix B �= ∇Det(A)
satisfying Ker(A) = Ker(B) and

AB = AA+ Det(A) (2.29)

BA = A+A Det(A) .

Since B �= A, there exists at least one element y ∈ C
n such that By �= ∇Det(A)y. Since 

C
n = Im(A) ⊕Ker(A), we may consider y in each subspace separately. If y ∈ Ker(A), 

then By = 0 = ∇Det(A)y. Therefore y must be an element of Im(A). Then,
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(B −∇Det(A))y = (B −∇Det(A))(AA+)y (2.30)

= (BA−∇Det(A)A)A+y

= (A+A Det(A) −A+A Det(A))A+y

= 0 .

Then By = ∇Det(A)y, thus establishing a contradiction. �
We round out this section with a few examples demonstrating applications of Formula 

(2.28).

Example 2.16. Let A be the constant, n × n matrix satisfying Aij = 1, ∀i, j = 1, . . . , n. 
Then it is true that

Det(A) = n , and A+ = 1
n2A . (2.31)

Hence

∇Det(A) = Det(A)A+ = 1
n
A . (2.32)

Example 2.17. Let A = 0 be the n × n zero matrix for arbitrary integer n. The reader 
can check that A+ = A = 0 by observing the four criteria in the definition of the pseudo 
inverse. Recall also that Det(0) = 1 for any square matrix with no non-zero eigenvalues. 
It follows that

∇Det(A) = Det(A)A+ = A = 0 . (2.33)

This basic result is more appealing using the shorthand ∇Det(0) = 0.

Example 2.18. Consider the projection–dilation matrix

A =
(
a2 ab

ab b2

)
(2.34)

that maps a point v ∈ R
2 onto the line through the origin containing the unit vector 

u = (a, b)T /
√

(a2 + b2) while scaling by a2 + b2. The reader may check that

Det(A) = a2 + b2 , and A+ = 1
(a2 + b2)2A . (2.35)

We thus obtain the intriguing result

∇Det(A) = 1
a2 + b2

A = 1
a2 + b2

(
a2 ab

ab b2

)
= 1

(a, b)(a, b)T (a, b)T (a, b) , (2.36)
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where the last form is meant to make clear that the result is the projection onto the 
subspace spanned by (a, b)T .

The previous example touches on graph theory if we let (a, b) = (
√
c, −√

c).

Example 2.19. Let L denote the Laplacian L = D − A of a weighted graph, where A is 
the weighted adjacency matrix having zeros down the diagonal and off-diagonal elements 
Aij equal to the value associated with the edge connecting nodes i and j. The matrix D
is diagonal and has elements satisfying Dij =

∑
i Aij =

∑
j Aij .

In the special case of a connected, two node graph with edge value c, the Laplacian is

L =
(

c 0
0 c

)
−

(
0 c

c 0

)
= c ·

(
1 −1
−1 1

)
. (2.37)

Noting that L is a projection-dilation matrix (see prior example), we get

Det(L) =
√
c
2 + (−

√
c)2 = 2c , and L+ = 1

4c2L , (2.38)

and thus, by Formula (2.28),

∇Det(L) = 2c
4c2L = 1

2cL = 1
2

(
1 −1
−1 1

)
. (2.39)

The last term is half the Laplacian associated to the simple, unweighted graph obtained 
by removing the weight c. Hence, ∇Det(L) takes graph connectivity into account but 
not scale.

2.1. The matrix differential

When obtaining matrix derivatives, it is often easiest to calculate the matrix differ-
ential dA and then relate back to the gradient using the formula [9]

dh(A) = tr
(
(dA)G

)
⇐⇒ ∇h(A) = G . (2.40)

Combining this identity with directional derivative Formula (2.7), we see that Ker(dA)
must equal Ker(A) for the special case of the derivative of the pseudo determinant. It 
follows that the matrix differential of the pseudo determinant is

dDet(A) = Det(A) tr
(
A+(dA)

)
, (2.41)

where we are implicitly selecting for the canonical gradient ∇Det(A) in order to satisfy 
Ker(dA) = Ker(A). Equation (2.41) may also be derived directly using the spectral 
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decomposition A = UΛU∗ =
∑k

j=1 λj uju
∗
j for rank k, Hermitian A. The differential of 

an eigenvalue of a Hermitian matrix A may be written in terms of the matrix differential 
itself [9]:

dλ = tr
(
uu∗ (dA)

)
. (2.42)

Theorem 2.20. The matrix differential of the pseudo determinant of Hermitian A ∈
Mk

n×n is

dDet(A) = Det(A) tr
(
A+(dA)

)
. (2.43)

Proof. The result is proven directly using Formula (2.42).

dDet(A) = d
k∏

j=1
λj (2.44)

=
k∑

j=1
dλj

∏
i�=j

λi

=
k∑

j=1
tr
(
uju

∗
j (dA)

) ∏
i�=j

λi

=
k∑

j=1
tr
( 1
λj

uju
∗
j (dA)

) k∏
i=1

λi

= Det(A)
k∑

j=1
tr
( 1
λj

uju
∗
j (dA)

)

= Det(A) tr
( k∑
j=1

1
λj

uju
∗
j (dA)

)
= Det(A) tr

(
A+(dA)

) �
The reader should note that Theorem 2.20 could also be used to derive the canonical 

gradient ∇Det(A) via Formula (2.40).

3. An example from statistics

We now derive the maximum likelihood estimator (MLE) for the singular covariance of 
the degenerate multivariate Gaussian distribution. Thus, this section may be considered 
an extension of the results found in [5]. The MLE may be incorporated into more ad-
vanced statistical algorithms such as expectation maximization for image segmentation 
[2]. The formulas derived in the following are also potentially useful in a Hamiltonian 
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Monte Carlo algorithm for Bayesian inference over reduced-rank covariance matrices (cf. 
[10]).

Let x1, . . . , xN follow a degenerate Gaussian distribution with mean μ and singular 
covariance Σ. The probability density function of such a random variable xi is given by

f(xi;μ,Σ) = Det(2πΣ)−1/2 exp
(
− 1

2(xi − μ)TΣ+(xi − μ)
)
. (3.1)

Assuming that μ is known, the log-likelihood �(Σ) of Σ is proportional to

−N log
(
Det(Σ)

)
−

N∑
i=1

(xi − μ)TΣ+(xi − μ) = −N log
(
Det(Σ)

)
− tr

(
Σ+R

)
, (3.2)

where R is the matrix of residuals.
To obtain the MLE Σ̂, we obtain the gradient of �(Σ) and set it to zero, just as in the 

case of a full-rank covariance matrix. To calculate the second term in the log-likelihood, 
we need the formula for the matrix differential of the pseudo inverse [7]:

dΣ+ = −Σ+(dΣ)Σ+ + Σ+Σ+(dΣ)(I − ΣΣ+) + (I − Σ+Σ)(dΣ)Σ+Σ+ . (3.3)

It follows that

d�(Σ) = −N tr
(
Σ+(dΣ)

)
+ tr

(
Σ+(dΣ)Σ+R

)
(3.4)

− tr
(
Σ+Σ+(dΣ)(I − ΣΣ+)R

)
− tr

(
(I − Σ+Σ)(dΣ)Σ+Σ+R

)
= −N tr

(
Σ+(dΣ)

)
+ tr

(
Σ+RΣ+(dΣ)

)
− tr

(
(I − ΣΣ+)RΣ+Σ+(dΣ)

)
− tr

(
Σ+Σ+R(I − Σ+Σ)(dΣ)

)
.

Setting d�(Σ̂) = 0 and applying Formula (2.40), we get

N Σ̂+ = Σ̂+RΣ̂+ − (I − Σ̂Σ̂+)RΣ̂+Σ̂+ − Σ̂+Σ̂+R(I − Σ̂+Σ̂) , (3.5)

and multiplying both sides by Σ̂ on the right and the left gives

N Σ̂ = Σ̂Σ̂+RΣ̂+Σ̂ − Σ̂(I − Σ̂Σ̂+)RΣ̂+Σ̂+Σ̂ − Σ̂Σ̂+Σ̂+R(I − Σ̂+Σ̂)Σ̂ (3.6)

= Σ̂Σ̂+RΣ̂+Σ̂ .

This last line follows because the matrices ΣΣ+ and Σ+Σ are projections onto the range 
of Σ and Σ+, and therefore (I−Σ+Σ) and (I−ΣΣ+) annihilate Σ. For the same reason, 
if we are willing to assume that Ker(R) = Ker(Σ), this last equation is solved by

Σ̂ = 1
N

Σ̂Σ̂+RΣ̂+Σ̂ = 1
N

R . (3.7)
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Thus only with that key assumption are we able to reproduce the classical result for full 
rank Σ. If we are not willing to make this assumption, i.e. if we have prior belief that, or 
have set up our model in such a way that, the range of Σ is a predetermined subspace, 
then the above equation may be written

Σ̂ = 1
N

Σ̂Σ̂+RΣ̂+Σ̂ = Σ̂ = 1
N

ΣΣ+RΣ+Σ . (3.8)

Then Σ̂ is precisely the projection of the residual matrix R/N onto the range of Σ.
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