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Self-exciting spatiotemporal Hawkes processes have found increasing
use in the study of large-scale public health threats, ranging from gun vio-
lence and earthquakes to wildfires and viral contagion. Whereas many such
applications feature locational uncertainty, that is, the exact spatial positions
of individual events are unknown, most Hawkes model analyses to date have
ignored spatial coarsening present in the data. Three particular 21st century
public health crises—urban gun violence, rural wildfires and global viral
spread—present qualitatively and quantitatively varying uncertainty regimes
that exhibit: (a) different collective magnitudes of spatial coarsening, (b) uni-
form and mixed magnitude coarsening, (c) differently shaped uncertainty re-
gions and—less orthodox—(d) locational data distributed within the “wrong”
effective space. We explicitly model such uncertainties in a Bayesian manner
and jointly infer unknown locations together with all parameters of a reason-
ably flexible Hawkes model, obtaining results that are practically and statis-
tically distinct from those obtained while ignoring spatial coarsening. This
work also features two different secondary contributions: first, to facilitate
Bayesian inference of locations and background rate parameters, we make a
subtle yet crucial change to an established kernel-based rate model, and sec-
ond, to facilitate the same Bayesian inference at scale, we develop a massively
parallel implementation of the model’s log-likelihood gradient with respect
to locations and thus avoid its quadratic computational cost in the context of
Hamiltonian Monte Carlo. Our examples involve thousands of observations
and allow us to demonstrate practicality at moderate scales.

1. Introduction. Spatiotemporal Hawkes processes (Reinhart (2018)) are stochastic
point processes that have found use in the modeling of various self-excitatory phenomena
in space and time, such as earthquakes and their aftershocks (Hawkes (1973), Ogata (1988),
Zhuang, Ogata and Vere-Jones (2004), Fox, Schoenberg and Gordon (2016)), retaliatory gun
violence (Loeffler and Flaxman (2018), Park et al. (2019), Holbrook et al. (2021a)), wild-
fires (Schoenberg (2004)) and viral epidemics (Kim (2011), Meyer and Held (2014), Choi
et al. (2015), Rizoiu et al. (2018), Kelly et al. (2019)). These applications all share at least
one characteristic that, after observing an event, one expects to observe one or more events
nearby and soon after. Because spatial proximity to an event increases the probability of
observing another event, accurate model inference hinges on precise locational data.

Unfortunately, noisy, incomplete or otherwise coarsened spatial data seem to be the norm
in many Hawkes process applications. Urban gunfire data sources may provide location data
at city block precision or rounded to the nearest 100 meters (Holbrook et al. (2021a)). Sci-
entists estimate the spatial position of an earthquake from noisy seismic wave energy arrival
times at remote stations (Lomax, Michelini and Curtis (2009)). Thus, the recording of seismic
locations amounts to an inverse problem arising from the use of remote sensing and complex
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physical models. In the best scenario and due to privacy concerns, viral case registries pro-
vide the hospital or medical clinic that receives the sickened patient, an imprecise stand-in
for the location at which the patient first contracts the virus. More often, epidemiological
data arise from heterogeneous public health sources that make use of varying levels of spatial
precision, be they on the national, provincial or municipal level (Park et al. (2018), Holbrook
et al. (2021b)). We account for such spatial coarsening by directly incorporating locational
uncertainty into our model in the form of prior distributions on spatial positions of individual
events. The upshot is a Bayesian hierarchical model with global structure and event-specific
prior distributions dictated by the weaknesses of the data at hand. Section 2.2 discusses these
priors and how they relate to the general theoretical framework for coarsening established in
Heitjan and Rubin (1991).

We demonstrate our approach with three distinct 21st century public health crises, each
featuring its own particular spatial uncertainty and scope. We first consider Washington D.C.
gunfire data generated throughout the span of 2018. Here, the Government of the District of
Columbia has purposefully rounded each gunshot’s latitudinal and longitudinal coordinates to
an effective 100 meter precision. Because this data originate from a spatially precise acoustic
gunshot location system (AGLS) (Loeffler and Flaxman (2018)), a reasonable prior on the
spatial position of each gunshot is a uniform distribution on the 10,000 m2 square centered at
the observed data. Alaskan wildfire data from the years 2015 to 2019 feature a different kind
of spatial uncertainty. Each observation features approximate spatial coordinates of the fire at
the time of discovery as well as the fire’s size, in acres, at the time of discovery. Because we
do not know the direction of each fire’s expansion at the time of discovery, the principle of
indifference suggests that we model each wildfire’s ignition location as taking position with
equal probability within a circle centered at the given discovery coordinates but with area
matching the discovery’s acreage. In contrast to the Washington D.C. gunfire example, this
application provides for differential spatial uncertainty between events.

A third application, the global spread of influenza from 2000 to 2012, presents a radically
different flavor of spatial bias. Because spatial proximity to an event increases the probabil-
ity of observing another event, the statistician that employs a spatiotemporal Hawkes process
must take care to adequately define spatial relationships between locations in a way that takes
the nature of the target phenomenon into account. Viruses spread across immensely complex
human networks shaped by our relationships, institutions and economies. On the global scale,
human air transportation networks capture the majority of viral transmission between geo-
graphic locations (Brockmann and Helbing (2013)). Thus, to model global viral spread, one
must build information about these transportation networks into one’s model. Failing to do
so may lead to biased results that deliver incorrect insights into a crucial global public health
challenge. This difficulty could be one of the reasons that the spatiotemporal Hawkes process
has not found use for modeling global viral transmission. Another reason for such a hole in
the literature is that global epidemiological data often arise from heterogeneous public health
sources that make use of varying levels of locational precision. Since spatial nearness is a
primary datum for the spatiotemporal Hawkes process, it is essential that our conception of
nearness be coherent. How far is Beijing from China? How far is California from France?
We would like to avoid such questions as well as mixed-methodological approaches, such as
randomizing locations labels to, say, cities, according to some contrived weighting scheme
prior to analysis.

We must, therefore, use an expressive prior to simultaneously account for these two
sources of spatial bias. Bayesian multidimensional scaling (DeSarbo, Kim and Fong (1999),
Oh and Raftery (2001), Oh and Raftery (2007), Holbrook et al. (2021b)) probabilistically
maps from pairwise global air transportation distances between countries to random vari-
ables within a latent Euclidean space, while our spatiotemporal Hawkes model describes the
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spread of viral cases, the locations of which are the very same low-dimensional latent vari-
ables. For viral case data arising from the same country, the temporal information provided by
the Hawkes process efficiently informs the distribution of latent locations on a finer, domestic
scale.

In meeting our goal of joint and fully Bayesian inference over location variables and model
parameters, we must develop a model for the Hawkes process background rate that admits
posterior inference for its individual parameters while retaining flexibility. As a secondary
contribution, we develop just such a novel background rate model and use MCMC to com-
pute posterior distributions for all spatiotemporal Hawkes process parameters, a first in the
presence of a nontrivial background rate. As another secondary contribution, we have made
significant additions to the HPHAWKES R package https://github.com/suchard-group/hawkes
(Holbrook, Ji and Suchard (2022)) to facilitate high-performance computing for posterior dis-
tributions of Hawkes process locations. In particular, we have developed a fully parallelized
implementation of the Hawkes log-likelihood gradient with respect to spatial locations (Ap-
pendix A).

2. Modeling. The strategy we use to model our three different target applications is to
specify a single, adequately flexible data generative process in the form of a spatiotemporal
Hawkes model (Section 2.1) and to design priors on event locations based on spatial biases
encoded in each application’s data (Section 2.2).

2.1. Spatiotemporal self-excitation. The spatiotemporal Hawkes process is an inhomo-
geneous Poisson point process (Daley and Vere-Jones (2003, 2008)) model for random vari-
ables (x, t) ∈ R

D ×R
+ in space and time, where the intensity function

λ(x, t) = μ(x, t) + ξ(x, t) = μ(x, t) + ∑
tn<t

g(x − xn, t − tn)

describes the infinitesimal rate conditioned on all other observations (xn, tn) for n = 1, . . . ,N

and xn = (xn1, . . . , xnD). Here, μ(·, ·) is the background rate symmetric in time, ξ(x, t) the
self-excitatory rate and g(·, ·) a triggering function determining the self-excitatory behavior
of the process. As in Mohler (2014), Loeffler and Flaxman (2018), Holbrook et al. (2021a),
we specify a triggering function that is exponential in time and Gaussian in space

ξ(x, t) = θω

hD

∑
tn<t

e−ω(t−tn)φ

(
x − xn

h

)
,

where ω, h and θ are strictly positive parameters. Similar to Holbrook et al. (2021a) but with
the inclusion of the indicator function I[t �=tn], a key difference, we use a flexible Gaussian
kernel smoother for the endemic rate

μ(x, t) = μ0

τD
x τt

N∑
n=1

φ

(
x − xn

τx

)
φ

(
t − tn

τt

)
I[t �=tn],

where the indicator function efficiently ensures that events do not contribute to their own
probability of occurrence (see joint probability density function equation (1), below), repre-
senting a novel and necessary departure from Holbrook et al. (2021a) if one wishes to in-
fer background rate parameters and process locations in a Bayesian fashion. We call 1/ω

and h and τt and τx the self-excitatory and background lengthscales or bandwidths, re-
spectively. We call μ0 and θ the background and self-excitatory rate weights, and their
relative magnitudes determine the amount of self-excitatory behavior exhibited by the pro-
cess. With � = (μ0, τx, τt , θ,ω,h), the likelihood (Daley and Vere-Jones (2003)) for data

https://github.com/suchard-group/hawkes
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(X, t) = ((x1, t1), . . . , (xN, tN)) is

L(X, t|�) = exp
(
−

∫
RD

∫ tN

0
λ(x, t)dt dx

) N∏
n=1

λ(xn, tn) := e−	(tN ) ·
N∏

n=1

λn.

Although integrating over the entirety of RD rather than a relevant subset is a popular and
often necessary modeling decision, one must regard this choice as an approximation when
measurement over R

D is incomplete (Schoenberg (2013)). This fact will provide an addi-
tional argument for our proposed modeling approach in Section 2.2.3. The background rate’s
indicator function does not change the integration term, so 	(tN) is the same as in Holbrook
et al. (2021a),

	(tN) = μ0

N∑
n=1

(



(
tN − tn

τt

)
− 


(−tn

τt

))
− θ

N∑
n=1

(
e−ω(tN−tn) − 1

)

=
N∑

n=1

(
μ0

(



(
tN − tn

τt

)
− 


(−tn

τt

))
− θ

(
e−ω(tN−tn) − 1

)) :=
N∑

n=1

	n.

Taken together, the log-likelihood is

(1)

�(X, t|�) = −	(tN) +
N∑

n=1

logλn

=
N∑

n=1

{
log

[
N∑

n′=1

(
μ0I[tn �=tn′ ]

τD
x τt

φ

(
xn − xn′

τx

)
φ

(
tn − tn′

τt

)

+ θωI[tn′<tn]
hD

e−ω(tn−tn′ )φ
(

xn − xn′

h

))]
− 	n

}

:=
N∑

n=1

[
log

(
N∑

n′=1

λnn′

)
− 	n

]
:=

N∑
n=1

�n.

In all three applications we equip μ0 and θ with standard normal priors truncated to be greater
than 0. In contrast to Mohler (2014), Loeffler and Flaxman (2018), Holbrook et al. (2021a),
we perform joint inference on all model lengthscales. To do so, we lend truncated normal pri-
ors to all model inverse lengthscales. We maintain constraints 0 < 1/ω < τt and 0 < h < τx .
Finally, we set the prior standard deviations of the background inverse lengthscales to be 10
times those of their respective self-excitatory counterparts. In this way we encode our general
expectation that self-excitation occurs at a finer scale than that of the background process. Re-
gardless, we find that the thousands of observations present in each of our applications can
easily overpower the soft prior constraints given by the prior standard deviations (Table 2).

Importantly, our model is similar to that of Mohler (2014), who finds that the spatial length-
scales h and τx may sometimes be exchanged with only a small change to the likelihood.
For this reason, Mohler (2014) fixes the two parameters to be equal to avoid multimodality.
Whereas our priors help ameliorate this issue, they do not solve it. Amazingly, we find that
inferring locations, as discussed in the following section, can actually help solve this prob-
lem (Table 2). As an upshot, we are able to retain full model flexibility. This is all the more
important because Reinhart and Greenhouse (2018) show that poorly estimated background
processes contribute to biased estimates of self-excitation.
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2.2. Modeling spatial uncertainty. Whereas we apply the same likelihood to each of our
target applications, we must craft our priors on individual event locations in a way that re-
spects the phenomenon being modeled and the spatial coarsening that gives rise to each spe-
cific dataset. Rather than obtaining observations that belong to the sample space of our ran-
dom variable of interest, we observe coarse data (Heitjan and Rubin (1991), Heitjan (1993))
within the power set of that sample space. Rounded, heaped, truncated, censored and missing
data are just a few common examples of coarsening. If one knows the coarsening mechanism
and it is not stochastic, then the data are grouped. Rounding and truncation with fixed preci-
sion are prominent examples of grouping. Addressing rounding is as simple as integrating the
originating likelihood over the uncertainty region the rounding induces. Adopting the estab-
lished parlance of missing data, Heitjan and Rubin (1991) show that a stochastic coarsening
mechanism is ignorable if: (a) it is coarsened at random (CAR), and (b) the parameters of
the data generating and coarsening processes are distinct. If one assumes that ignorability
holds, then modeling the data as grouped, that is, ignoring the stochasticity of the coarsening
mechanism, is completely valid. In this paper we use the phrases spatial coarsening, spatial
uncertainty and even spatial bias interchangeably.

In the remainder, xn continues to denote an individual location that interfaces directly
with the Hawkes model likelihood. This is a location variable. We denote its corresponding
observed locational datum as xn and let X be the collection of all N observed locations.

2.2.1. Washington D.C. gun violence. We first apply our Hawkes model to analyze gun-
fire in the American capital throughout the year 2018. The data feature 3982 gunshots ob-
tained from a spatially precise AGLS (Section 1) but with latitudinal and longitudinal coor-
dinates rounded to the nearest three decimal points for the purpose of privacy. This rounding
amounts to recording observations within an approximate 100 meter precision in localized
vertical and horizontal axes. Due to the precision of the original AGLS data, we are confident
in specifying uniform priors over the 10000 m2 square centered at each location for each
location, that is, in local coordinates scaled to meters,

(2) p(xn) ∝ 1, xnd − 50 < xnd < xnd + 50, n = 1, . . . ,N, d = 1,2.

Our uncertainty is uniform in both shape and magnitude throughout the sample. As stated
above, rounding is an example of grouping, and we know that our prior specification is valid
and corresponds directly to inference based on the grouped-data likelihood of Heitjan and Ru-
bin ((1991), Example 1). In other words, our latent variable formulation accounts for grouping
by integrating over the region of uncertainty induced by the grouping mechanism. Failing to
account for this grouping leads to biased inference.

2.2.2. Alaskan wildfire ignitions. Next, we model the occurrence and spread of 2925
wildfires in Alaska through the years 2015 to 2019. Specifically, we would like to use the
exact time and place of ignition for each wildfire as our data. Instead, we have the time,
rough spatial coordinates xn and area An of the fire at discovery. Because we do not know
the direction of each wildfire’s extent, we invoke the principle of indifference (Marquis de
Laplace (1925)) and assume equal extent in all directions, that is, that each uncertainty region
is a circle centered at the given coordinates, assuming effects of geography are negligible.
Here, we specify the radius rn of each circular uncertainty region so that the circle’s area
matches the size of the wildfire at time of discovery,

(3) p(xn) ∝ 1, ‖xn − xn‖2 < rn = √
An/π, n = 1, . . . ,N,D = 2.

This example, therefore, stands in contrast to the gun violence example, insofar as the shape
of uncertainty regions are circular rather than square and the magnitudes of these circles vary
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across all observations. The coarsening mechanism appears to be random, but it is impossible
to capture the complicated processes that lead a passerby to discover a wildfire at any partic-
ular extent. Unlike the D.C. gunfire example, we do not know the exact circumstances that
bring about the data’s observed spatial coordinates, so we must simply assume that the CAR
condition holds. Less problematic is the assumption that data generating and data coarsening
mechanisms have distinct parameters. Having arrived at ignorability, our prior specification
again corresponds to valid inference based on the grouped-data likelihood.

2.2.3. Global influenza contagion.

2.2.3.1. Doubly debiased inference. Four thousand seven hundred thirty three influenza
cases collected from 64 countries worldwide between 2000 and 2012 provide a much more
difficult modeling task. Approximately, one-third of the observations bear labels for the city,
another third for the province or state and the last third for the country in which the case oc-
curred. We would like to proceed in a similar manner, as with the gun violence and wildfires
analyses, but restricting location variables to the complicated borders of countries, provinces
or cities is technically infeasible. Furthermore, naive spatial distances between locations on
planet Earth fail to capture the way viruses propagate around the globe. The global human
air transportation network, specifically, the number of humans traveling between locations,
provides a much better tool for tracking the spread of viral strains (Brockmann and Helbing
(2013)). We, therefore, propose to model the locations of each viral case in such a way that
simultaneously accounts for the multiprecision nature of the data and the outsized role played
by human air transport.

Classical multidimensional scaling (MDS) is a two-step method for mapping from pair-
wise distances or dissimilarities between objects to representations of these objects within
a low-dimensional Euclidean space (Kruskal (1964)). In modeling the global spread of in-
fluenza, we let Y = Y(X) be an N × N matrix of pairwise distances ynn′ generated by
Brockmann and Helbing (2013) and inversely related to the number of air traffic passen-
gers exchanged between the countries where cases n and n′ occurred. Given any such matrix
Y, the centering transformation

Y �−→ −1

2

(
I − 1

N
11T

)
Y◦2

(
I − 1

N
11T

)
results in a positive semidefinite matrix corresponding to the sample covariance of N points
existing in some D-dimensional subspace of N -dimensional Euclidean space. After obtain-
ing this sample covariance, a simple application of principal component analysis (PCA)
(Pearson (1901)) renders a low-dimensional representation of the N objects of interest. On
the one hand, objects with smaller pairwise distances arrange themselves closer in L2 distance
within the low-dimensional space than objects with larger pairwise distances, leading to in-
terpretable visualizations. On the other hand: (1) both the centering transformation and the
eigendecomposition of PCA scale O(N3) in computational complexity, (2) low-dimensional
representations fail to communicate uncertainty arising from randomness in the data gener-
ating mechanism and (3) secondary modeling of the low-dimensional representations results
in difficult to quantify dependencies on the MDS process.

Bayesian MDS (BMDS) offers a way around these problems by positing that each ob-
ject’s latent location is a random variable, translating the MDS projection into a probability
model on the observed pairwise distances conditioned on distances between latent locations
(Ramsay (1982)) and specifying an appropriate prior distribution over these locations. For
any two distinct objects n and n′, we follow Oh and Raftery (2001) and model their observed
pairwise distance as conditionally independent, truncated normal random variables

ynn′ ∼ N
(
δnn′, σ 2)

I[ynn′>0] for n > n′,
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where the centrality parameter δnn′ = ‖xn − xn′‖2 is the Euclidean distance between latent
locations xn and xn′ in R

D . Conditioned on all latent locations X, the probability density
function of observed distance data Y becomes

(4)

p
(
Y | X, σ 2) ∝ (

σ 2)N(1−N)
4 exp

(
− ∑

n>n′
rnn′

)
,

rnn′ = (ynn′ − δnn′)2

2σ 2 + log


(
δnn′

σ

)
,

for 
(·) the cumulative distribution function of a standard normal variate. Unlike classical
MDS, BMDS uses the language of probability to describe the low-dimensional representa-
tions, thus: (1) exchanging the O(N3) computational complexity of classical MDS for the
O(N2) complexity of evaluating the BMDS likelihood, (2) allowing for uncertainty quan-
tification and (3) avoiding conceptual difficulties arising from the mixed-methodological ap-
plication of probability models to the results of classical MDS. Indeed, in the BMDS frame-
work, modeling the latent variables x is as straightforward as specifying the prior distribution
within a hierarchical model. Examples of such an approach are the use of a mixture of D-
dimensional normals in Oh and Raftery (2007) and Gaussian processes in Holbrook et al.
(2021b), but there is no reason a priori to restrict the class of available priors to be Gaussian.

2.2.3.2. Choosing number of latent dimensions. We would like to determine the optimal
latent dimensionality D for the spatiotemporal Hawkes process; we use D to quantify the
complexity of viral contagion through the global human air transportation network, and we
let cross-validation (Geisser (1975)) dictate our choice of D. For BMDS our data are the
distance matrix Y with off-diagonal elements ynn′ , the pairwise distances between objects
n and n′. Within F -fold cross-validation, each fold f comprises held-out observations Yf

and the remaining observations Y−f . Let s index an MCMC state corresponding to a single
draw from the posterior conditioned on Y−f , and denote the set of latent locations and model
parameters (X,�,σ 2)(s),−f for s = 1, . . . , S, the total number of MCMC states. We take the
empirical log pointwise predictive density (l̂pd) as a measure of model fit and start with the
log pointwise predictive densitiy lpd (Vehtari, Gelman and Gabry (2017)),

(5)

lpd = ∑
f

∑
n<n′

logp
(
y

f

nn′ |Y−f )
= ∑

f

∑
n<n′

log
∫

p
(
y

f

nn′ |X,�,σ 2)
p

(
X,�,σ 2|Y−f )

d
(
X,�,σ 2)

≈ ∑
f

∑
n<n′

log
1

S

S∑
s=1

p
(
y

f

nn′ |(X,�,σ 2)(s),−f ) = l̂pd.

Given competing models with different latent dimensionalities, we generally prefer the model
with larger l̂pd.

3. Inference and implementation. We approach all three applications with an adap-
tive random scan Metropolis-within-Gibbs (Gilks, Best and Tan (1995)) scheme, building on
Algorithm 1 of Holbrook et al. (2021a). For the first two applications the target posterior
distribution takes the form

p(� |X, t) ∝ p(X, t | �)p(�) =
(∫

p(X | X)L(X, t|�)dX
)
p(�),

where one obtains the uniform p(X | X) by inverting the constraints of equations (2) and (3).
We compute the high-dimensional integral over X using a Metropolis–Hastings kernel with
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blockwise updates over sets of individual location variables. Satisfying the square constraints
of equation (2) is straightforward using truncated normal proposals. Satisfying the circular
constraints of equation (3) is less cut and dry. For an individual location variable xn of the
Markov chain’s state s, we generate the (s + 1)th state according to the Metropolis kernel
with proposal distribution

(6) x∗
n ∼ q

(
x∗
n|xn

) ∝ 1,
∥∥x∗

n − xn
∥∥

2 < rn,
∥∥x∗

n − xn

∥∥
2 < rnε, ε > 0,

where ε is an algorithmic parameter tuned with the help of diminishing adaptations (Roberts
and Rosenthal (2007)). When ‖xn − xn‖2 + rnε < rn, sampling is easy. Otherwise, we use a
simple rejection sampler that satisfies the two circular constraints. In this case the Metropolis–
Hastings accept-reject step requires calculating the area of the two circles’ intersection (also
referred to as the asymmetric lens), but one can easily obtain this quantity in closed-form and
with negligible computational expense. Under our BMDS formulation for the third applica-
tion, global viral contagion, the target posterior distribution is

p
(
σ 2,� | Y, t

) ∝ p
(
Y | σ 2)

p
(
σ 2)

p(�) =
(∫

p
(
Y | X, σ 2)

p(X, t | �)dX
)
p

(
σ 2)

p(�).

To compute the high-dimensional integral over values of X, we use Hamiltonian Monte Carlo
(HMC) (Neal (2011)) and again use simple Metropolis–Hastings proposals for the remaining
parameters σ 2 and �. Hamiltonian Monte Carlo over X requires evaluation of both spa-
tiotemporal Hawkes model and BMDS joint densities (equations (1) and (4)) and their gradi-
ents.

The Hawkes model likelihood (used in all three applications) and the BMDS likeli-
hood and Hawkes likelihood gradients (used in the third application) all share the pro-
hibitively burdensome computational complexity O(N2). We, therefore, use the OPENCL
and C++ high-performance computing libraries MASSIVEMDS (Holbrook et al. (2021b))
https://github.com/suchard-group/MassiveMDS and HPHAWKES (Holbrook et al. (2021a))
https://github.com/suchard-group/hawkes (Holbrook, Ji and Suchard (2022)) to evaluate
these functions and their gradients in parallel on either a graphics processing unit (GPU) or
with a multicore central processing unit (CPU) with vectorization. In writing this paper, we
have contributed GPU and CPU implementations of the Hawkes process log-likelihood gra-
dient to the library HPHAWKES, and we detail the massively parallel Algorithms 1 and 2 and
their resulting speedups in Appendix A. Finally, we access and embed the high performance
implementations within the broader Metropolis-within-Gibbs scheme with the BEAST soft-
ware package (Suchard et al. (2018)) using simple application programming interfaces.

4. Demonstrations. Besides the high-performance computing packages HPHAWKES

and MASSIVEMDS we use for MCMC, we use the R programming language (R Core Team
(2019)) and the R graphics packages GGPLOT2 (Wickham (2016)) and GGMAP (Kahle and
Wickham (2013)) to produce and summarize results. The R package CODA (Plummer et al.
(2006)) provides our effective sample size (ESS) measures, and we base reported 95% cred-
ible intervals on empirical posterior 0.025 and 0.975 quantiles. Finally, we make all analy-
sis source files publicly available at https://github.com/andrewjholbrook/unknown_locs and
https://github.com/andrewjholbrook/FluHawkes (Holbrook, Ji and Suchard (2022)).

4.1. Washington D.C. gunfire in 2018. We first apply our methodology to the analysis of
3982 gunshots occurring in Washington D.C. between January 2 and December 31, 2018. The
Government of the District of Columbia makes gunfire data from the years 2014–2019 freely
available at https://opendata.dc.gov. The data arise from ShotSpotter AGLS technology (Carr
and Doleac (2016)) that has become increasingly accurate since first implemented in Wash-
ington D.C. in 2006. Loeffler and Flaxman (2018) use a spatiotemporal Hawkes process to

https://github.com/suchard-group/MassiveMDS
https://github.com/suchard-group/hawkes
https://github.com/andrewjholbrook/unknown_locs
https://github.com/andrewjholbrook/FluHawkes
https://opendata.dc.gov
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FIG. 1. We color the observed locations xn of 3982 gunshots occurring in the year 2018 by the magnitude of the

mean posterior displacement of each event’s inferred locations xn: ‖∑S
s=1(x(s)

n − xn)/S‖2, where S is the total
number of MCMC states. For each event this measure communicates the amount of posterior displacement in a
single, general direction away from the observed location xn.

analyze a similar sample from the years 2010 through 2012, and Holbrook et al. (2021a) ap-
ply a related model to data from the years 2006 through 2019. The D.C. Government rounds
all latitudinal and longitudinal coordinate data to three decimal places, a coarsening that cor-
responds to 100 meters precision. Because we wish to isolate this as the only source of spatial
uncertainty and because of the gradual improvement of ShotSpotter technology, we choose
to focus on a higher quality sample from 2018. We also remove all observations listed as
potential firecrackers as well as all data from the first day of the year, again avoiding possible
corruption due to misattribution to firecrackers. The result is 3982 events with locations plot-
ted in Figure 1. The minimum, mean and maximum pairwise distances between raw locations
are 0.0, 5.4 and 16.4 km. We compare these numbers to the data’s spatial precision of 0.1 km.

To infer all six Hawkes model parameters and all 3982 location variables, we generate
30 million Markov chain states (requiring 48 hours on our Nvidia Quadro GP100 GPU) that
provide minimum and mean ESS of 131 and 424 for latent locations and 401 and 571 for
model parameters. First, we would like to know whether there is a spatial pattern to the pos-
terior displacements away from raw locations for individual events, where we use the formula
‖∑S

s=1(x
(s)
n − xn)/S‖2 to quantify this displacement. Figure 1 shows that high posterior dis-

placements occur both on the peripheries and at the centers of high activity areas. This fact
suggests that more complex patterns underlie posterior displacements and that temporal re-
lationships may play a role. Figure 2 presents three examples of event groups with larger
posterior displacements. For the first group, posterior locations draw away from figure center
despite relatively small temporal differences between events ranging from 11 to 120 hours.
Here, temporal proximity appears to be overcome by the gunfire vacuum of a commercial
shopping center at plot center. The second pair of events appear to have larger posterior dis-
placements for a very different reason. Here, the two events are spatially isolated from other
gunshots, so their posterior locations attract to each other, despite a larger temporal disparity
of 55 days. Finally, the third cluster tells a much simpler story. The four events occupy the
center of a large, high-activity area and gravitate toward the center of mass.
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FIG. 2. Visualizing the relationship between observed locations xn (yellow) and posterior sample locations x(s)
n

for 10 gunshots in the District of Columbia. Inferred locations may deviate from observed for multiple reasons. In
the first plot, differences in date and time range from 11 to 120 hours; in the second, the two events differ by 55
days. On the one hand, the gunshots in the first plot occur in a gunfire dense area but separated by a low-activity
shopping center. On the other hand, the gunshots in the second plot are spatially isolated from other events.

Figure 3 and Table 1 present inferential results for the Hawkes model parameters, where
the normalized self-excitatory weight θ/(θ + μ0) communicates the proportion of all events
arising from self-excitation rather than the background process. Here, we see generally con-

FIG. 3 AND TABLE 1. Posterior densities and 95% credible intervals of Hawkes model background and self-
-excitatory lengthscales for “full” (locations inferred) and “naive” models of gun violence in the District of
Columbia. Credible intervals for self-excitatory lengthscales do not overlap, while those of the background com-
ponent display marginal overlap.
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sistent results between the model that incorporates spatial uncertainty and that which does
not. Perhaps unsurprisingly, the major discrepancies in posterior inference between these
models are for the two spatial lengthscales. The self-excitatory spatial lengthscales for the full
and naive models are 61.4 m (56.4, 67.2) and 72.3 m (67.9, 77.2), and the background spatial
lengthscales are 98.1 m (94.0, 103.3) and 106.3 m (102.1, 110.7). Smaller spatial lengthscales
make sense, insofar as inferred locations may attract to each other, but one might find these
statistically significant and marginally statistically significant differences surprising, given
the relatively small spatial uncertainty (0.1 km) precision relative to a mean pairwise dis-
tance in the data of roughly five km. Despite statistically significant differences, we judge the
practical differences to be small, and this is good news for practitioners who want to avoid in-
tegrating over latent locations. Nonetheless, this good news only seems to apply when spatial
uncertainty is: (a) relatively small and (b) uniform across observations a priori. In Section C
we use simulated data to test this hypothesis and find that the naive model indeed fails under
moderate coarsening.

4.2. Alaskan wildfire ignitions: 2015–2019. The Alaska Interagency Coordination Cen-
ter makes various wildfire data resources freely accessible at https://fire.ak.blm.gov/predsvcs/
maps.php. In particular, we apply our methodology to data consisting of wildfire geographic
coordinates, date and time of fire discovery and size in acres at time of discovery. Figure 4
displays the raw locations for all 2925 wildfires, plotting each with size proportional to its
radius on the log scale. The minimum, mean and maximum pairwise distances between raw
locations are 0.0, 500.3 and 2373.8 km. The empirical distribution of wildfire discovery site
radii roughly resembles a power law, with minimum, median, mean and maximum of 0.01,
0.01, 0.08 and 4.42 km. In this way the spatial uncertainty relative to the scale of locational
spread is much smaller for this application than for the Washington D.C. gunfire example.
This difference allows us to partially isolate the effects of differential uncertainty across the
observed sample on posterior inference.

Using the prior of equation (3) on locations, we model the spread of wildfire ignitions
with our spatiotemporal Hawkes model and, simultaneously, infer ignition locations. Again,
we generate 30 million Markov chain states that provide a minimum and mean ESS of 120
and 398 for inferred locations and 510 and 586 for the six Hawkes’ model parameters. De-
spite the smaller sample size, compared to the gun violence data, MCMC for this example

FIG. 4. Data include time of fire discovery as well as size (in acres) and location of each wildfire at time of
discovery.

https://fire.ak.blm.gov/predsvcs/maps.php
https://fire.ak.blm.gov/predsvcs/maps.php
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FIG. 5 AND TABLE 2. Spatiotemporal Hawkes model posterior inference for 2015–2019 wildfire ignitions in
Alaska with “Full” model (locations inferred) and of “Naive” model (locations not inferred) modes A and B:
inferring locations may help avoid modes at near-equal lengthscales (bold). Mode A provides an unreasonably
large background temporal lengthscale that fails to incorporate seasonal trends, and the normalized self-excita-
tory weight of mode B may be considered too large to be realistic.

requires 50% more time (totaling roughly 72 hours), due to the rejection sampler we use to
generate from (6). Figure 5 and Table 2 present inferential results from the model with loca-
tions inferred as well as the naive model. As discussed in Section 2.1, simultaneous inference
for self-excitatory and background lengthscales can sometimes lead to multimodality. This
issue is so problematic that Mohler (2014) fixes the problem by setting spatial lengthscales
to be equal, that is, by removing flexibility from the model. Here, we find that inferring loca-
tions may actually help mitigate such multimodality: while the naive model gets stuck in two
different modes (A and B), the full model does not. As shown in Figure 2, multimodality can
lead to poor model fits and unreasonable results. With a posterior mean of 3244.0 days and
95% credible interval of (1929.7, 5803.5), inference for the background temporal lengthscale
of the naive model’s mode A suggests no seasonal wildfire trend whatsoever in Alaska. In
contrast, inference for the full model fully captures seasonal trends with a posterior mean of
25.9 days (23.8, 27.9) for the temporal lengthscale of the background rate.

4.3. Global influenza cases: 2000–2012. We analyze the worldwide influenza spread us-
ing 4733 cases recorded between the years of 2000 and 2012. Of the 4733 cases, 1161 are
H1N1 subtype, 1341 H3N2 subtype, 1195 Victoria lineage (VIC) and 1036 Yamagata lineage
(YAM). H1N1 and H3N2 are influenza type A and, generally, more prevalent than Victoria
and Yamagata which are both type B and contribute to significantly less infections annually.
Between H1N1 and H3N2, H1N1 is responsible for two major pandemics, the Spanish flu of
1918–1919 and the swine flu of 2009, while H3N2 has contributed to one, the Hong Kong
flu of 1968–1969. Bedford et al. (2015) relate the greater epidemiological success of type
A influenza to higher rates of antigenic drift, leading to different age groups becoming in-
fected at different rates. In particular, adults are more susceptible to H1N1 and, being more
likely frequent fliers than children, help the subtype travel more quickly through global air
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travel networks (Bedford et al. (2014)) than competing strains. Combining BMDS with a
phylogenetic diffusion model that conditions on each subtype and lineage’s evolutionary his-
tory, Holbrook et al. (2021b) confirms that the rate of diffusion through the global air traffic
network is significantly greater for H1N1 than for H3N2, YAM and VIC. Here, we are in-
terested in whether inference based on our BMDS-Hawkes model renders similar results and
how greater efficiency of H1N1 might express itself for individual Hawkes model parameters,
for example, shorter lengthscales or greater rates of self-excitation.

The data we consider here are a subset of the 5392 analyzed in Holbrook et al. (2021b),
where we have removed those cases that lack a precise date. Moreover, we use the exact
same matrix of pairwise air traffic distances between countries Y. Brockmann and Helbing
(2013) create these distances from a network for which nodes are 4096 airports worldwide
and edges (when they exist) between nodes inversely relate to the total number of passengers
traveling between the two airports each year. Motivated by the multiprecision nature of the in-
fluenza case data—spatial labels are approximately one-third cities, one-third provinces and
one-third countries—Holbrook et al. (2021b) then collapse across airports to obtain effective
distances between countries on this global transportation network. We use the Hawkes model
to infill the relationships between latent locations coming from the same country. Through the
spatiotemporal Hawkes likelihood that interfaces with temporal data t, the BMDS-Hawkes
model further informs latent positions X. Thus, we efficiently and simultaneously: (a) adapt
our data to the realities of global air transport and (b) exploit all data despite its multi-
precision nature.

Before producing the full analysis, we use the l̂pd of equation (5) as measure of model
fit and perform five-fold cross-validation to select the latent dimensionality of our BMDS-
Hawkes model. Dimensions 2 through 8 provide l̂pds of −13.2, −8.1, −6.2, −5.5, −5.2,
−5.1 and −5.0 million. Noting a lack of relative improvement for further dimensions, we
judge the six-dimensional model to be sufficiently complex. Next, we use HMC (Section 3)
to generate 80 million Markov chain states. Employing Algorithm 2 for massively parallel
Hawkes log-likelihood gradient calculations, this requires roughly 10 days on our Nvidia
Titan V GPU.

The top two plots of Figure 6 show the naive global distribution of the influenza case data
colored by the posterior mean probability that each event arises from self-excitation, that is,

1

S

S∑
s=1

ξ (s)(x(s)
n , tn

)
/
(
ξ (s)(x(s)

n , tn
) + μ(s)(x(s)

n , tn
))

for x(s)
n a location in the six-dimensional latent air traffic network space and ξ (s)(·, ·) and

μ(s)(·, ·) the self-excitatory and background rates parameterized by parameters �(s). Poste-
rior concentration around this posterior mean is extremely tight for all observations, so the
models strongly believe that blue cases arise from the background process while red arise
from self-excitation. For the naive model there are as many blue cases as there are loca-
tions: the model regards the earliest case in every location as coming from the background
process and every case thereafter as arising from this earliest case. Reflecting this fact, the
posterior distributions of the naive model’s self-excitatory spatial lengthscale concentrate
below three km (Figure 9). Thus, naive model inference communicates no information be-
yond what one would garner from a simple exploratory data analysis. On the other hand,
the six-dimensional BMDS-Hawkes model reveals significantly less background activity and
a model more in tune with the self-excitatory reality of viral spread. Still, we can inter-
pret background activity as arising from relatively large and fast traversals of the global air
traffic network. The third plot is similar but shows the arrangement of latent locations for
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FIG. 6. Geographic and network positions of 4733 influenza cases, each colored by posterior mean probability
the case originates from another “parent” case. Top figure shows results from spatially naive model; bottom
two figures from the six- and two-dimensional combined Bayesian multidimensional scaling and spatiotemporal
Hawkes model (BMDS-Hawkes). In the latter, proximity of Laos (LA) to the United States (U.S.) portends poor
cross-validation results.
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FIG. 7. Posterior distributions for Hawkes model parameters based on 1161 H1N1 subtype, 1341 H3N2 subtype,
1195 Victoria lineage and 1036 Yamagata lineage influenza cases. In general, H1N1 is more prevalent and infects
adults in greater numbers than it does children.

a single posterior sample for the two-dimensional BMDS-Hawkes model. In general, the
world economic powers gravitate toward the middle while smaller countries tend toward the
outside. These arrangements are largely as one might hope, but there are hints that the two-
dimensional model is insufficient. For example, Laos (LA) is much closer to the United States
(U.S.) than it is the rest of Asia, in general, and China in particular. This suggests that a higher
dimensionality might be more appropriate, a fact which cross-validation results bear out.

Figure 7 displays posterior densities for the Hawkes model parameters for each influenza
subtype and lineage. We immediately notice that the H1N1 model attributes more influenza
activity to self-excitation than do the other models. The posterior means and 95% credible
intervals of the normalized self-excitatory weight for H1N1, H3N2, VIC and YAM are 0.95
(0.82, 0.96), 0.72 (0.31, 0.91), 0.91 (0.47, 0.95), 0.72 (0.32, 0.90). We note that overlapping
credible intervals indicate uncertainty as to this specific ordering. On the other hand, there is
very little posterior uncertainty with regards to the ordering of the self-excitatory temporal
lengthscales. In order, the same posterior measures for H1N1, VIC, YAM and H3N2 are 0.26
years (0.24, 0.29), 0.46 years (0.42, 0.52), 0.62 years (0.56, 0.69) and 0.86 years (0.74, 0.98).
This result suggests that the self-excitatory temporal lengthscale of our Hawkes model and the
rate of diffusion of the phylogenetic diffusion model of Holbrook et al. (2021b) are similar,
insofar as they both capture the greater efficiency with which H1N1 uses passenger air traffic
networks to quickly travel the globe. Moreover, H1N1’s posterior mean self-excitatory tem-
poral lengthscale is small enough to fully capture seasonal trends. Finally, the large posterior
mean for the same parameter of the H3N2 model and its inability to capture seasonal trends
suggest that a network build solely of air transportation may be insufficient for modeling the
spread of H3N2.
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5. Discussion. The spatiotemporal Hawkes process is a powerful tool for modeling the
complex spatial dynamics of many real-world phenomena. Although its use is growing in-
creasingly widespread, previous applications of the model have glossed over the presence
of spatial coarsening and uncertainty in the problems analyzed and the role played by the
same uncertainty in biasing model inference. By considering three diverse applications, we
have demonstrated: (a) the prevalence of spatial uncertainty in processes commonly regarded
as self-exciting, (b) the practicality of integrating over such uncertainty in the manners pro-
posed and (c) the statistically and practically significant differences between full and naive
approaches. Furthermore, we have shown that our strategies may also be useful in mitigating
multimodality, a problem that makes model fitting, diagnostics and interpretation more cum-
bersome. Indeed, we have demonstrated that one can reap these benefits without having to
sacrifice model flexibility.

That said, there are a few meaningful changes to our proposed approach that may lead to
improved inference. First, this approach seeks to account for spatial coarsening but fails to
adapt to temporal coarsening. For this reason we removed hundreds of viral cases that lack
full temporal precision from our analysis of global influenza. One could make retainment of
these observations possible by directly modeling the coarsened data in a similar way to how
we have modeled locations in our first example. Unfortunately, implementing the MCMC to
integrate over latent times would be especially difficult, due to the self-excitatory rate func-
tion’s reliance only on past events. The required combinatorial integration would necessitate
careful bookkeeping, and it is difficult to predict the empirical mixing of such a Markov
chain. Second, our priors over locations in both the gunfire and wildfire examples could take
further advantage of geographical information. In the former example, one might use the fact
that gun violence is more likely to occur indoors. In the latter, one could use rivers and lakes
to further reduce the support of wildfire ignitions. We are not sure how one might generate
and respect such priors at nontrivial scale. Third, we use Bayesian multidimensional scaling
to model viral spread through Euclidean space instead of a complex network. It is plausi-
ble that other continuous spaces might be more appropriate. For example, a low-dimensional
torus with its varying curvature might be better able to capture pairwise relationships more
efficiently than Euclidean space of the same dimension.

There are usually many valid ways to approach a challenge, and other approaches may
prove more tractable over time. In modeling global viral spread, for instance, it might also
prove useful to equip the self-excitatory rate with a dramatically heavy-tailed triggering func-
tion, such as a continuous scale-mixture of truncated Gaussian functions (Polson, Scott and
Windle (2014), Nishimura and Suchard (2018)). This would allow the same triggering func-
tion to account for both domestic and international transmission. That said, this would ame-
liorate the issue of adapting to transportation dynamics but would not account for spatially
coarsened and multiprecision data.

To conclude, we hope that this paper’s results will prove instructive to scientists interested
in spatiotemporal modeling, regardless of the model or statistical paradigm they choose to
employ. At the very least, our results suggest that sensitivity testing by perturbing spatial data
is a good idea. In an exact analogy to the way we have selected priors on spatial locations,
one might generate perturbations in a way that reflects the a reasonable model of the spatial
uncertainty at hand. Finally, our proposed approach appears to be easily translatable into the
frequentist paradigm in the form of marginal maximum likelihood (Geyer (1991)). MCMC
similar to that performed here would provide for integration over locations, although it is
not immediately clear how such integration would influence the already complex consistency
arguments involved in maximum likelihood estimation for spatiotemporal model parameters
(Schoenberg (2016)).



BAYESIAN MITIGATION OF SPATIAL COARSENING FOR A HAWKES MODEL 589

Algorithm 1 Parallel computation of Hawkes process log-likelihood gradient: uses multiple
central processing unit (CPU) cores along with loop vectorization to compute log-likelihood
gradient. For double-precision floating point, the algorithm uses either SSE or AVX vector-
ization to make J = 2 or 4 long jumps and cut loop iterations by one-half or three-fourths,
respectively. Here, B is the number of CPU threads available. Symbols �, λ and 	 appear in
equation (1)
1: Compute rates λ1, . . . , λN :

a: parfor b ∈ {1, . . . ,B} do
b: if b �= B then
c: Upper ← b�N/B�
d: else
e: Upper ← �N/B�
f: end if
g: for n ∈ {(b − 1)�N/B� + 1, . . . ,Upper} do
h: copy xn, tn to cache
i: λn ← 0 � vector of length J
j: n′ ← 1
k: while n′ < N do
l: J ← min(J,N − n′)
m: copy xn′:(n′+J ), tn′:(n′+J ) to cache
n: �nn′ : �nn′:(n′+J−1) ← (xn − xn′ ) : (xn − xn′+J−1) � vectorized subtraction
o: calculate δnn′ : δn(n′+J−1) � vectorized multiplication
p: calculate λnn′ : λn(n′+J−1) � vectorized evaluation
q: λn ← λn + λnn′ : λn(n′+J−1) � vectorized addition
r: n′ ← n′ + J

s: end while
t: end for
u: end parfor

2: Compute N D-dimensional gradients ∂�
∂xn

:
a: parfor b ∈ {1, . . . ,B} do
b: if b �= B then
c: Upper ← b�N/B�
d: else
e: Upper ← �N/B�
f: end if
g: for n ∈ {(b − 1)�N/B� + 1, . . . ,Upper} do
h: copy xn, tn to cache
i: ∂�

∂xn
← 0 � vector of length J

j: n′ ← 1
k: while n′ < N do
l: J ← min(J,N − n′)
m: copy xn′:(n′+J ), tn′:(n′+J ) to cache
n: �nn′ : �nn′:(n′+J−1) ← (xn − xn′ ) : (xn − xn′+J−1) � vectorized subtraction
o: calculate δnn′ : δn(n′+J−1) � vectorized multiplication
p: calculate μnn′ : μn(n′+J−1) � vectorized evaluation
q: calculate ξnn′ : ξn(n′+J−1) � vectorized evaluation
r: calculate ξn′n : ξ(n′+J−1)n � vectorized evaluation
s: for j ∈ n′, . . . , n′ + J − 1 do

t: ∂�
∂xn

← ∂�
∂xn

+ (
μnj
λn

+ μjn
λj

)
�jn

τ2
x

+ (
ξnj
λn

+ ξjn
λj

)
�jn

σ2
x

u: end for
v: n′ ← n′ + J

w: end while
x: end for
y: end parfor



590 A. J. HOLBROOK, X. JI AND M. A. SUCHARD

Algorithm 2 Parallel computation of Hawkes process log-likelihood gradient: calculates the
log-likelihood gradient with multiple levels of parallelization on graphics processing unit
(GPU). In practice, we specify B = 128 to be the the size of the GPU work groups. Symbols
�, λ and 	 appear in equation (1)
1: Compute rates λ1, . . . , λN :

a: parfor n ∈ {1, . . . ,N} do
b: copy xn , tn to local � B threads
c: parfor N ′ ∈ {1, . . . , �N/B�} do
d: n′ ← N ′
e: λnN ′ ← 0
f: while n′ < N do
g: copy xn′ , tn′ to local � B threads
h: �nn′ ← xn − xn′ � vectorized subtraction

i: calculate δnn′ =
√∑

�nn′ ◦ �nn′ � vectorized multiplication

j: λnN ′ ← λnN ′ + λnn′ � λnn′ a function of δnn′ , tn and tn′
k: n′ ← n′ + B

l: end while
m: end parfor
n: λn ← ∑

N ′ λnN ′ � binary tree reduction on chip
o: end parfor

2: Compute N D-dimensional gradients ∂�
∂xn

:
a: parfor n ∈ {1, . . . ,N} do
b: copy xn , tn to local � B threads
c: parfor N ′ ∈ {1, . . . , �N/B�} do
d: n′ ← N ′
e: ( ∂�

∂xn
)N ′ ← 0

f: while n′ < N do
g: copy xn′ , tn′ to local � B threads
h: �nn′ ← xn − xn′ � vectorized subtraction

i: calculate δnn′ =
√∑

�nn′ ◦ �nn′ � vectorized multiplication

j: ( ∂�
∂xn

)N ′ ← ( ∂�
∂xn

)N ′ + (
μnn′
λn

+ μn′n
λj

)�n′n
τ2
x

+ (
ξnn′
λn

+ ξn′n
λn′ )�n′n

σ2
x

k: n′ ← n′ + B

l: end while
m: end parfor
n: ∂�

∂xn
← ∑

N ′ ( ∂�
∂xn

)N ′ � binary tree reduction on chip
o: end parfor



BAYESIAN MITIGATION OF SPATIAL COARSENING FOR A HAWKES MODEL 591

FIG. 8. Computing the spatiotemporal Hawkes process log-likelihood gradient with respect to locations using
central and graphics processing units (CPU and GPU). [Left] Relative speedups over single-core advanced vector
extensions (AVX) vectorization for single-core nonvectorized and streaming SIMD extensions (SSE), multicore
AVX and many-core GPU implementations for 75,000 simulated observations. [Right] Absolute time to perform
gradient evaluation for single- and multicore AVX processing and GPU as a function of the number of simulated
data points.

APPENDIX A: PARALLELIZATION

In writing this paper, we have developed massively parallel implementations of the gra-
dient of the log-likelihood with respect to spatial locations for our spatiotemporal Hawkes
model. We have also added this code to HPHAWKES, a C++ library and R package
for high-performance computing for Bayesian inference under the spatiotemporal Hawkes
process. We have made this open-source software freely available at https://github.com/
suchard-group/hawkes (Holbrook, Ji and Suchard (2022)).

Letting λnn′ be as defined in equation (1), define λn := ∑N
n′ λnn′ . Then, the gradient of the

Hawkes likelihood with respect to locations is

∂�

∂xn

=
N∑

n′=1

(
μnn′

λn

+ μn′n
λn′

)(
xn′ − xn

τ 2
x

)
+

(
ξnn′

λn

+ ξn′n
λn′

)(
xn′ − xn

σ 2
x

)

:=
N∑

n′=1

(
∂�

∂xn

)
n′

.

Algorithms 1 and 2 describe our massively parallel implementation of this gradient on a
CPU and GPU, respectively, and Figure 8 illustrates some of the speedups achieved by these
implementations.

APPENDIX B: ADDITIONAL RESULTS

This section contains posterior inferential results for the naive model from Section 4.3
in the form of Figure 9. In this figure we are particularly interested in the bottom-left plot
of posterior densities for self-excitatory spatial lengthscales. No matter the influenza strain,
these posterior distributions concentrate below three km. Such small lengthscales amount to
zero self-excitation between even closely neighboring cities, let alone any transmission on
the provincial, national or global scales. This way the naive model attributes one influenza
case (the earliest) to the background process for each distinct location and all successive cases

https://github.com/suchard-group/hawkes
https://github.com/suchard-group/hawkes
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FIG. 9. Strain specific posterior inference for a naive model.

to self-excitation. One might address this issue by spatially perturbing all cases within, say,
the same city, but this would not address the multiprecision nature of the data we consider
and certainly would not take any transportation network into account. In addition, it seems
that the resulting spatial lengthscale estimates would depend on the amount of perturbation
applied in ways that are difficult to quantify or motivate a priori.

APPENDIX C: SIMULATION STUDY

For 800 independent instances, we: (a) simulate a spatiotemporal Hawkes process, (b) in-
duce three different levels of coarsening and (c) apply our model with both fixed coarsened
locations data and inferred locations. We then compare the coverage of resulting credible
intervals for both the self-excitatory spatial lengthscale h and the unobserved locations. Al-
though there is no expectation for Bayesian credible intervals to have perfect frequentist
operating characteristics, the model with inferred locations performs reasonably well and
outperforms the naive model, especially when coarsening becomes more severe.

To simulate a Hawkes process we use the clustering based algorithm of Zhuang, Ogata and
Vere-Jones (2004) which first draws events from an inhomogeneous background process and
then simulates successive generations according to the self-excitatory triggering function and

TABLE 3
Empirical coverage from 800 independent simulations for 50%, 80% and 95% credible intervals (CIs) of the

self-excitatory spatial lengthscale h

50% CIs 80% CIs 95% CIs

Spatial precision 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1

Fixed locations 0.00 0.19 0.52 0.00 0.42 0.81 0.00 0.68 0.96
Sampled locations 0.53 0.49 0.53 0.84 0.81 0.81 0.98 0.95 0.96
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FIG. 10. Boxplots and mean proportions of locations covered by 95% credible intervals (CI) across 800 inde-
pendent simulations. The purple line represents 0.95.

its weight. For the background process we use a rate function with three Gaussian modes and
draw an average of 200 points. Conditional on these points, we iteratively simulate new gen-
erations with an expected number of children of 0.5, and spatial lengthscales of 0.5. We then
coarsen the locations data by rounding to 0.1, 0.5 and 1.0 to investigate performance when
the magnitude of coarsening is less than, equal to and greater than the spatial lengthscale.
We then generate 30,000 MCMC samples, both inferring the latent locations within bounded
margins (0.1, 0.5, 1.0), as in Section 2.2.1, and keeping them fixed. In total, this simulation
requires the generation of 30,000 ×4 × 800 = 96,000,000 MCMC samples for which we use
our Nvidia Quadro GP100 GPU and the algorithms of Appendix A. Table 3 shows credible
interval empirical coverage of the true spatial lengthscale h. In general, we find that coverage
is reasonably close to nominal values when inferring locations but deteriorates as a function
of the data’s spatial precision for the naive model. Figure 10 shows the distribution of pro-
portions of locations covered by 95% credible intervals across the independent simulations.
In general, coverage is reasonably close to 0.95 but deteriorates for data rounded to nearest
integer (precision = 1). Part of this behavior, including the increased number of outliers,
plausibly arises from the need to generate longer MCMC chains.
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SUPPLEMENTARY MATERIAL

hpHawkes source (DOI: 10.1214/21-AOAS1517SUPPA; .zip). A zip file ‘hpHawkes.zip’
containing the source code for R package HPHAWKES.

Global influenza source (DOI: 10.1214/21-AOAS1517SUPPB; .zip). A zip file ‘Flu
Hawkes.zip’ containing the source code for global influenza analysis.

Gunfire and wildfire source (DOI: 10.1214/21-AOAS1517SUPPC; .zip). A zip file ‘un-
knownLocs.zip’ containing the source code for Washington D.C. gunfire and Alaskan wildfire
analyses.

https://doi.org/10.1214/21-AOAS1517SUPPA
https://doi.org/10.1214/21-AOAS1517SUPPB
https://doi.org/10.1214/21-AOAS1517SUPPC
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