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Abstract

Inferring dependencies between mixed-type biological traits while accounting for evolution-

ary relationships between specimens is of great scientific interest yet remains infeasible

when trait and specimen counts grow large. The state-of-the-art approach uses a phyloge-

netic multivariate probit model to accommodate binary and continuous traits via a latent vari-

able framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the

computational bottleneck—integrating many latent variables from a high-dimensional trun-

cated normal distribution. This approach breaks down as the number of specimens grows

and fails to reliably characterize conditional dependencies between traits. Here, we propose

an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The nov-

elty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC)

with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated

latent variables and correlation matrix elements. In an application exploring HIV-1 evolution

from 535 viruses, the inference requires joint sampling from an 11,235-dimensional trun-

cated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup

compared to BPS and makes it possible to learn partial correlations between candidate viral

mutations and virulence. Computational speedup now enables us to tackle even larger prob-

lems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For

broader applicability, we extend the phylogenetic probit model to incorporate categorical

traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.
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Author summary

We aim to learn the relationships between different biological features, or traits, observed

in related specimens that have evolved together over time. This is of great scientific inter-

est because by identifying how different traits influence each other, we gain insights into

the mechanisms underlying important biological processes. Learning the relationships

between traits across a large number of specimens is computationally challenging, particu-

larly when traits have mixed-type values (continuous and discrete). The previous best

approach utilizing a method called bouncy particle sampler (BPS) struggles with increas-

ing specimen and trait counts, resulting in unreliable estimates of trait dependencies. We

develop a more efficient approach that largely outperforms BPS, reducing the runtime of

our large-scale applications from weeks to days. We apply our method to study the evolu-

tion of HIV and influenza viruses, as well as flower and pollinator co-evolution. Our work

provides an efficient yet general way to understand the connections between mixed-type

traits, offering valuable insights into the evolution of complex biological systems.

Introduction

An essential goal in evolutionary biology is to understand the across-trait covariation observed

within biological samples, or taxa, ranging from plants and animals to microorganisms and

pathogens such as human immunodeficiency virus (HIV) and influenza. This task is difficult

because taxa are implicitly correlated through their shared evolutionary history often described

with a reconstructed phylogenetic tree. Here, tree tips correspond to the taxa themselves, and

internal nodes are their unobserved ancestors. Inferring across-trait covariation requires a

highly structured model that can explicitly describe the tree structure and adjust for across-

taxa covariation. Phylogenetic models do exactly this but are computationally challenging

because one must integrate out unobserved ancestor traits while accounting for uncertainties

arising from tree estimation. The computational burden increases when taxon and trait counts

grow large and becomes worse when traits include continuous and discrete quantities. Cybis

et al. develop the first phylogenetic method that can assess across-trait covariation while con-

trolling for a large, unknown evolutionary tree with hundreds of tips [1]. To jointly model

mixed-type traits, this approach assumes discrete traits arise from continuously valued latent

variables that follow a Brownian diffusion along the tree [2]. Assuming latent processes is a

common strategy for modeling mixed-type data and it finds uses across various fields [3–7].

Subsequent work by [8] solves an essential identifiability issue in [1] by adding specific con-

straints on the diffusion covariance. The resulting model in particular generalizes the multivar-

iate probit model [9]. The most important contribution of [8], however, is an efficient

inference scheme that achieves order-of-magnitudes efficiency gains over [1]. In this work, we

significantly advance performance compared to [8] to solve even larger problems.

Here is an intuition on why our new inference scheme, to be formally introduced in Meth-

ods section, outperforms the one by [8]. For N taxa each with P continuous or binary traits,

Bayesian inference for the phylogenetic probit model involves repeatedly sampling latent vari-

ables X from their conditional posterior, an (N × P)-dimensional truncated normal distribu-

tion. The (N × P) size of the truncated normal distribution results from having one latent

variable for each taxon and each trait. For this task, [8] develop a bouncy particle sampler

(BPS) [10] combined with an efficient dynamic programming approach that speeds up the

most expensive step in the BPS implementation. Their approach, however, fails to address

another source of computational inefficiency in posterior inference under the phylogenetic
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probit model—a high degree of correlation between X and C. [8] use a separate Hamiltonian

Monte Carlo sampler [11, HMC] to sample C and update the two sets of parameters alternately

within a random-scan Gibbs scheme [12]. The phylogenetic probit model assumes X to follow

a multivariate Gaussian distribution whose covariance matrix incorporates C. By the model’s

very design, therefore, the values in C influence the strength and direction of the correlations

between elements of X. This correlation between the two parameters slows down convergence

and mixing of the Gibbs scheme as each update of X or C is strongly influenced by the current

value of the other parameter. To address this issue, our present solution utilizes a state-of-the-

art Markov chain Monte Carlo (MCMC) method called Zigzag-HMC [13]. Unlike BPS, this

method allows a joint update of X and C through differential operator splitting [13, 14] that

generalizes the previously proposed split HMC framework based on Hamiltonian splitting [11,

15]. Zigzag-HMC can further take advantage of the same OðNÞ gradient evaluation strategy

developed by [8].

Our sampling scheme greatly improves the mixing of elements in C and thus provides a

reliable estimate of the across-trait partial correlation matrix R, the inverse of the correlation

matrix normalized to have unit diagonals. The partial correlation between two traits quantifies

their conditional dependence that accounts for, and hence removes confounding by, the effects

of other traits in the model. Use of partial correlations thus allow us to gain insight into poten-

tial causal pathways and help guide further research into underlying biological mechanisms.

We apply our methodology to three real-world examples. First, we re-evaluate the HIV evo-

lution application in [8] and identify HIV-1 gag immune-escape mutations linked with viru-

lence through strong conditional dependence relationships. Our findings closely match with

the experimental literature and indicate a general pattern in the immune escape mechanism of

HIV. Second, we examine the influenza H1N1 glycosylation pattern across different hosts and

detect strong conditional dependencies between glycosylation sites closely related to host

switching. Finally, we investigate how floral traits of Aquilegia flower attract different pollina-

tors, for which we generalize the phylogenetic probit model to accommodate a categorical pol-

linator trait.

Methods

Mixed-type trait evolution

We describe biological trait evolution with the phylogenetic multivariate probit model follow-

ing [8] and extend it to unordered categorical traits as in [1]. While we do not consider

ordered categorical traits in this work and leave it to future work to support such traits, the

mapping of latent variables in this case can also be found in [1]. We either know the phyloge-

netic treeF a priori or infer it from a molecular sequence alignment S [16]. In our two large-

scale HIV and influenza applications (Results section) with available sequence data, we use a

continuous-time Markov chain evolutionary model [17] to construct pðSjFÞ and so inferF
simultaneously. We refer interested readers to [16] for more details on tree sampling. When

investigating the efficiency gain of our method over [8], we utilize a fixed tree for a more direct

comparison and also to reduce the overall run-time. For our third application on flower and

pollinator co-evolution, we adopt the same fixed tree as in [18].

Consider N taxa on a treeF ¼ ðV; bÞ that is a directed, bifurcating acyclic graph. The node

set V of size 2N − 1 contains N tip nodes, N − 2 internal nodes and one root node. The branch

lengths b = (b1, . . ., b2N−2) denote the child-parent distance in real time. We observe Pmixed-

type traits for each taxon. The trait data Y = {yij} = (Ycont, Ydisc) partition as Ycont, an N × Pcont

matrix of continuous traits and Ydisc, an N × Pdisc matrix of discrete ones. We associate with

each trait a latent variable xij 2 R, if the j-th trait is continuous or binary, and a (mj − 1)-
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dimensional latent vector Xij ¼ fxij;kg 2 R
mj � 1

, if the trait is categorical, wheremj denotes the

number of categorical classes. Continuous traits yij can be seen as as latent variables that are

directly observed so xij = yij. To relate latent variables to observed discrete traits, we assume a

threshold model for binary traits and a choice model for traits with more than two classes. For

a binary trait yij,

yij ¼ gbðxijÞ ¼
0 if xij � 0;

1; if xij > 0:

8
<

:
ð1Þ

For a categorical trait yij, the possible classes are fc1; . . . ; cmjg with the reference class being c1.

We have

yij ¼ gcðxij;1; . . . ; xij;mj � 1Þ ¼

c1 if xij;max � 0;

ck if mj > 1 and xij;max ¼ xij;k� 1 > 0;

8
<

:
ð2Þ

where xij;max ¼ maxðxi;j; . . . ; xi;jþmj � 2Þ. This data augmentation strategy is a common choice to

model categorical data [19].

After concatenating all the latent variables, for each node i = 1, . . ., 2N − 1 in F we have

Plat-dimensional latent variable Xi 2 R
Plat with Plat ¼ Pcont þ

PPcontþPdisc
j¼Pcontþ1

ðmj � 1Þ. As a side

note, for continuous yij the corresponding xij is observed, and so Xi is actually a partially latent

vector. Since in our applications only a small fraction of yij is continuous, we omit “partial” to

ease the notation.

The latent variables follow a multivariate Brownian diffusion process along F such that Xi

distributes as a multivariate normal (MVN)

Xi � N ðXpaðiÞ; biΩÞ; i ¼ 1; . . . ; 2N � 2; ð3Þ

where Xpa(i) is the parent node value and the Plat × Plat covariance matrix O describes the

across-trait association. The intuition behind biO is that the further away a child node is from

its parent node (larger bi), the bigger difference between their node values. Assuming a conju-

gate root prior X2N� 1 � N ðμ0;o
� 1ΩÞ with prior mean μ0 and prior variance ω−1O, we can

analytically integrate out latent variables on all internal nodes. Marginally, then, the N × Plat

tip latent variables X have the matrix normal distribution

X � MTNNPlat
ðM;Υ;ΩÞ; ð4Þ

where M = (μ0, . . ., μ0)T is an N × Plat mean matrix and the across-taxa covariance matrix Υ

equals VðFÞ þ o� 1J [20]. The diffusion matrix VðFÞ is a function of branch lengths such that

its diagonal elements represent the sum of branch lengths from a tip to the root, while the off-

diagonal elements are the branch length from the root to the most recent common ancestor of

two tips. The augmented likelihood of X and Y factorizes as

pðY;X jΥ;Ω;μ0;oÞ ¼ pðY jXÞpðX jΥ;Ω; μ0;oÞ; ð5Þ

where p(Y|X) = 1 if X are consistent with Y according to Eqs (1) and (2) and 0 otherwise. Fol-

lowing [8], we decompose O = DCD where C is a Plat × Plat correlation matrix. The diagonal

entries of C are all equal to 1, while the off-diagonal entries lie in the range of [−1, 1] and repre-

sent the correlations between pairs of latent variables and, hence, their corresponding traits.

The Plat × Plat diagonal matrix D = {σii} for i = 1, . . ., Plat contains the marginal standard devia-

tion of each latent variable. Importantly, since discrete traits only inform the sign or ordering
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of their underlying latent variables, certain elements of D must be set as a fixed value to ensure

that the model is parameter-identifiable [8]. Without loss of generality, we fix σii = 1 for σii cor-

responding to discrete traits. For continuous traits, the square of the corresponding element

(s2
ii) multiplied by a branch length is the marginal variance for the Brownian diffusion process

along that branch (Eq 3). In other words, this product reports the amount of trait variation

that accumulates along a branch. [8] demonstrate the necessity of this DCD decomposition,

which also allows a non-informative prior [21, LKJ] on C. For goodness-of-fit of the phyloge-

netic probit model we refer interested readers to [8] where the explicit tree modeling leads to a

significantly better fit.

A novel inference scheme

We sample from the joint posterior to learn the across-trait correlation C

pðC;D;X;F jY;SÞ / pðY jXÞ � pðX jC;D;FÞ �

pðC;DÞ � pðS jFÞ � pðFÞ;
ð6Þ

where we drop the dependence on hyper-parameters (Υ, μ0, ω) to ease notation. We fix μ0 to

be a Plat-dimensional zero vector and ω to be 1. We then specify the priors p(C, D) and pðFÞ
as in [8] where pðFÞ is a typical coalescent tree prior on F [22] and p(C, D) = p(C)p(D). We

set independent log normal priors on D diagonals that correspond to continuous traits. We

assume an LKJ prior on the Cholesky factor of C to ensure that C and O are positive definite

and invertible. [8] use a random-scan Gibbs [12] scheme to alternately update X, {C, D} and F
from their full conditionals [16]. They sample X from an NPlat-dimensional truncated normal

distribution with BPS and deploy the standard HMC based on Gaussian momentum [23] to

update {C, D}. Instead, we simulate the joint Hamiltonian dynamics on {X, C, D} by combin-

ing novel Hamiltonian zigzag dynamics on X [24] and traditional Hamiltonian dynamics on

{C, D}. This strategy enables an efficient joint update of the two highly-correlated sets of

parameters. The improved efficiency allow us to focus on the across-trait partial correlation

matrix R = {rij}. After collecting the MCMC samples of O, we obtain R by the standard trans-

formation [25]:

Ω� 1 ¼ P ¼ fpijg; rij ¼ �
pij
ffiffiffiffiffiffiffiffiffi
piipjj

p : ð7Þ

Since R measures the linear relationship between pairs of variables after controlling for effects

of all other variables in the model, R usually lies in a more-constrained space than C and is

more difficult for the sampler to effectively explore its posterior distribution. We demonstrate

the improved efficiency of our method in inferring R in Results section. In the subsequent sec-

tions, we first describe how Zigzag-HMC samples X from a truncated normal and then detail

the joint update of {X, C, D}.

Zigzag-HMC for truncated multivariate normals. We outline the main ideas behind

HMC [11] before describing Zigzag-HMC as a version of HMC based onHamiltonian zigzag
dynamics [13, 24]. In order to sample a d-dimensional parameter x = (x1, . . ., xd) from the tar-

get distribution π(x), HMC introduces an auxiliarymomentum variable p ¼ ðp1; . . . ; pdÞ 2 R
d

and samples from the product density π(x, p) = π(x)π(p) by numerically discretizing the Ham-

iltonian dynamics

dx
dt
¼ rKðpÞ;

dp
dt
¼ � rUðxÞ; ð8Þ

where U(x) = −log π(x) and K(p) = −log π(p) are the potential and kinetic energy. In each
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HMC iteration, we first draw p from its marginal distribution pðpÞ � N ð0; IÞ, a standard

Gaussian and then approximate (8) from time t = 0 to t = τ by L = bτ/�c steps of the leapfrog
update with step size � [26]:

p pþ
�

2
rx log pðxÞ; x x þ �p; p pþ

�

2
rx log pðxÞ: ð9Þ

The end state is a validMetropolis proposal that one accepts or rejects according to the stan-

dard acceptance probability formula [27, 28].

Zigzag-HMC differs from standard HMC insofar as it posits a Laplace momentum

π(p)/ ∏i exp(−|pi|), i = 1, . . ., d. The Hamiltonian differential equations now become

dx
dt
¼ sign pð Þ;

dp
dt
¼ � rUðxÞ; ð10Þ

and the velocity v≔ dx/dt 2 {±1}d depends only on the sign of p and thus remains constant

until one of pi’s undergoes a sign change (an “event”). To understand how the Hamiltonian

zigzag dynamics (10) evolve over time, one must investigate when such events happen.

Before moving to the truncated MVN, we first review the event time calculation for a gen-

eral π(x) following [24]. Let τ(k) be the kth event time and (x (τ(0)), v (τ(0)), p (τ(0))) is the ini-

tial state at time τ(0). Between τ(k) and τ(k+1), x follows a piecewise linear path and the

dynamics evolve as

xðtðkÞ þ tÞ ¼ xðtðkÞÞ þ tvðtðkÞÞ; vðtðkÞ þ tÞ ¼ vðtðkÞÞ; t 2 ½0; tðkþ1Þ � tðkÞÞ; ð11Þ

and

piðtðkÞ þ tÞ ¼ piðtðkÞÞ �
Z t

0

@ iU½xðt
ðkÞÞ þ svðtðkÞÞ�ds for i ¼ 1; . . . ; d: ð12Þ

Therefore we can derive the (k + 1)th event time

tðkþ1Þ ¼ tðkÞ þmin
i
ti; ti ¼ min

t>0

�

pi
�
tðkÞ
�
¼

Z t

0

@ iU
h
xðtðkÞÞ þ svðtðkÞÞ

i
ds
�

; ð13Þ

and the dimension causing this event is i* = argmini ti. At the moment of τ(k+1), the i*th veloc-

ity component flips its sign

vi∗ðtðkþ1ÞÞ ¼ � vi∗ðtðkÞÞ; vjðtðkþ1ÞÞ ¼ vjðtðkÞÞ for j 6¼ i∗: ð14Þ

Then the dynamics continue for the next interval [τ(k+1), τ(k+2)).

We now consider simulating the Hamiltonian zigzag dynamics for a truncated MVN aris-

ing from the phylogenetic probit model.

x � N ðμ;ΣÞ subject to x 2 fmapðxÞ ¼ yg; ð15Þ

where μ and S are the mean vector and covariance matrix for the MVN and map(�) is the map-

ping from the vectorized latent variables x to y as in Eqs (1) and (2). In other words, y is the

NP-dimensional vectorized discrete data such that x 2 Rd for d = NPlat. Since vectorizing the

random variables under a matrix normal distribution (3) results in a MVN distribution, we

have S = O�Υ where� denotes the Kronecker product. The mean vector μ is N copies of

the pre-specified root prior mean vector μ0 concatenated together.

In the setting of Eq (15), we haverU(x) = S−1x whenever x 2 {map(x) = y}. Importantly,

this structure allows us to simulate the Hamiltonian zigzag dynamics exactly and efficiently

[24]. We handle the constraint map(x) = y with a technique from [11] where the constraint
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boundaries embody “hard walls” that the Hamiltonian zigzag dynamics “bounce” against

upon impact. To distinguish different types of events, we define gradient events arising from

solutions of Eq (13), binary events arising from hitting binary data boundaries and categorical
events arising from hitting categorical data boundaries.

We first consider how to find the gradient event time. Starting from a state (x, v, p), by plug-

ging inrU(x) = S−1x to Eq (13), we can calculate the gradient event time tg by first solving d
quadratic equations

p ¼ tΣ� 1ðx � μÞ þ
t2

2
Σ� 1v; ð16Þ

and then taking the minimum among all positive roots of Eq (16). When π(x) is a truncated

MVN arising from the phylogenetic probit model, we exploit the efficient gradient evaluation

strategy in [8] to obtain S−1(x − μ) and S−1v without the notorious Oðd3Þ cost to invert S. In

our application, μ is a vector of all zeros since we set the root prior mean μ0 to be all zero. If

there is prior knowledge about μ0, we can use another fixed value without increasing the

computational cost.

Next, we focus on the binary and categorical events. We partition x into two sets: Sbin =

{xi: xi is for binary data} and Scat = {xi : xi is for categorical data}. Starting from a state (x, v, p),

a binary event happens at time tb when the trajectory first reaches a binary boundary at dimen-

sion ib

tb ¼ jxib=vib j; ib ¼ argmin i2Ibin
jxi=vij for Ibin ¼ fi : xivi < 0 and xi 2 Sbing: ð17Þ

Here, we only need to check the dimensions satisfying xivi< 0, i.e., those for which the trajec-

tory is heading towards the boundary. At time tb, the trajectory bounces against the binary

boundary, and so the ibth velocity and momentum element both undergo an instantaneous

flip vib  � vib , pib  � pib , while other dimensions stay unchanged.

Finally, we turn to categorical events. Suppose that a categorical trait yj = ck belongs to one

ofm possible classes, and x1, x2, . . ., xm−1 the underlying latent variables. Eq (2) specifies the

boundary constraints. If k = 1, them − 1 latent variables must be all negative, which poses the

same constraint as if they were for n − 1 binary traits, therefore we can solve the event time

using Eq (17). If k> 1, we must check when and which two dimensions first violate the order

constraint xk−1 = max(x1, . . ., xm−1)> 0. With the dynamics starting from (x, v, p), the categor-

ical event time tjc is given by

tjc ¼ jðxk� 1 � xicÞ=ðvk� 1 � vicÞj; ic ¼ argmin i2Icat
jðxk� 1 � xiÞ=ðvk� 1 � viÞj;

for Icat ¼ fi : vk� 1 < vi and xi 2 Scatg;
ð18Þ

when xic reaches xk−1 and violates the constraint. To identify ic we only need to check

dimensions with vk−1 < vi where the distance xk−1 − xi is decreasing. At tjc, the two dimen-

sions involved (k − 1 and ic) bounce against each other such that vk−1 −vk−1, vic  � vic ,
pk−1 −pk−1, pic  � pic . Note tjc is for a single yj and we need to consider all categorical

data to find the actual categorical event time tc ¼ minj tjc.
We now present the dynamics simulation with all three event types included, starting from

a state (x, v, p) with x 2 {map(x) = y}:

1. Solve tg, tb, tc using Eqs (16), (17) and (18) respectively.

2. Determine the actual (first) event time t = min{tg, tb, tc} and update x and p as in Eqs (11)

and (12) for a duration of t.
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3. Make instantaneous velocity and momentum sign flips according to the rules of the actual

event type, then go back to Step 1.

Based on the above discussion, Algorithm 1 describes one iteration of Zigzag-HMC on

truncated MVNs where we simulate the Hamiltonian zigzag dynamic for a pre-specified

duration ttotal. For a truncated MVN arising from the phylogenetic probit model, the most

computationally expensive step is the gradient evaluation in Line 3, where a matrix-vector

multiplication by the precision matrix F = S−1 is involved. A matrix inversion to evaluate F

directly is expensive since F = O−1�Υ−1 and computing Υ−1 has a cost of OðN3Þ. We

adopt the dynamic programming strategy of [8] to reduce the cost of Line 3 from either

OðN2Plat þ NP2
latÞ when F is fixed, or OðN3 þ P3

latÞ when F is random, to OðNP2
latÞ. We refer

interested readers to [8] for details on the dynamic programming strategy. In brief, this

strategy avoids explicitly inverting Υ by recursively traversing the tree [20] to obtain N con-

ditional densities that directly translate to the desired gradient φx.

Algorithm 1 Zigzag-HMC for multivariate truncated normal distributions
1: function HzzTMVN(x, p, ttotal)
2: v  sign(p)
3: φx  Φ(x − μ)
4: tremain  ttotal
5: while tremain > 0 do
. find gradient event time tg

6: a  φv/2, b  φx, c  −p
7: tg  mini {minPositiveRoot(ai, bi, ci)} . “minPositiveRoot”

defined below
. find binary boundary event time

8: tb  mini xi/vi, for i with xivi < 0 and xi 2 Sbin
. find categorical boundary event time, nc = number of categorical
traits

9: for j = 1, . . ., nc do
10: tjc  min ijðxk� 1 � xicÞ=ðvk� 1 � viÞj for i with vk� 1 < vi and xi 2 Scat
11: end for
12: tc  minj t

j
c

. the actual event happens at time t
13: t  min {tg, tb, tc, tremain}
14: x  x + tv, p  p − tφx − t2φv/2, φx  φx + tφv
15: if a gradient event happens at ig then
16: vig  � vig

17: else if a binary boundary event happens at ib then
18: vib  � vib

, pib  � pib
19: else if a categorical boundary event happens at ic1, ic2 then
20: vic1

 � vic1
;vic2

 � vic2
;pic1

 � pic1
;pic2

 � pic2

21: end if
22: φv  φv + 2viΦei
23: tremain  tremain − t
24: end while
25: return x, p
26: end function
* minPositiveRoot(ai, bi, ci) returns the minimal positive root of the
equation aix

2 + bix + c = 0, or else returns +1 if no positive root
exists.

Jointly updating latent variables and across-trait covariance. The N × Plat latent vari-

ables and Plat × Plat across-trait covariance are highly correlated with each other, so individual

Gibbs updates can be inefficient. The posterior conditional of X is truncated normal and thus

allows for the efficient Hamiltonian zigzag simulation. The conditional distribution for
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covariance components C and D has no such special structure, so we map them to an uncon-

strained space and deploy Hamiltonian dynamics based on Gaussian momentum. We use a

standard mapping of C elements to real numbers [29] that first transforms C to canonical par-

tial correlations (CPC) that fall in [−1, 1] and then apply the Fisher transformation to map

CPC to the real line. We then construct the joint update of latent variables and covariance via

differential operator splitting [13, 14] to approximate the joint dynamics of Laplace-Gauss

mixed momenta.

We denote the two concatenated sets of parameters X and {C, D} as x = (xG, xL) with

momenta p = (pG, pL), where indices G and L refer to Gaussian or Laplace momenta. The joint

sampler updates (xG, pG) first, then (xL, pL), followed by another update of (xG, pG). This sym-

metric splitting ensures that the simulated dynamics is reversible and hence constitutes a valid

Metropolis proposal mechanism [13]. The LG-STEP function in Algorithm 2 describes the pro-

cess of simulating the joint dynamics for time duration 2� via the analytical Hamiltonian zig-

zag dynamics for (xL, pL) and the approximate leapfrog dynamics (9) for (xG, pG). Because xG
and xL can have very different scales, we incorporate a tuning parameter, the step size ratio r,
to allow different step sizes for the two dynamics. To approximate a trajectory of the joint

dynamics from t = 0 to t = τ, we apply the function LG-STEPm = bτ/2�c times, and accept or

reject the end point following the standard acceptance probability formula [27, 28]. We call

this version of HMC based on Laplace-Gauss mixed momenta as LG-HMC and describe one

iteration of LG-HMC in Algorithm 2 where the inputs include the joint potential function

U(xG, xL). We use LG-HMC to update {X, C, D} as a Metropolis-within-Gibbs step of our ran-

dom-scan Gibbs scheme. The overall sampling efficiency strongly depends onm, the step size

� and the step size ratio r, so it is preferable to auto-tune all of them. We provide an empirical

method to automatically tune r in S1 File. We provide another option utilizing the no-U-turn

algorithm to automatically decide the trajectory lengthm [23] and call the resulting algorithm

LG No-U-Turn Sampler (LG-NUTS). We adapt the step size � with primal-dual averaging to

achieve an optimal acceptance rate [23].

Algorithm 2 One LG-HMC iteration
1: function LG-HMC(xG, xL, pG, pL, U, m, �, r)
. Record the initial state

2: x0
G  xG; x0

L  xL; p0
G  pG; p0

L  pL
3: for i = 1, . . ., m do
4: xG, xL, pG, pL  LG-STEP(xG, xL, pG, pL, �, r)
5: end for
. Calculate the acceptance probability a, where KG and KL denote the
kinetic energy based on Gaussian or Laplace momentum and k�k1, k�k2
are the L1 and L2 norm.

6: K0
G  ðkp

0
Gk2
Þ

2
=2, K0

L  kp
0
Lk1

7: KG  (kpGk2)
2/2, KL  kpLk1

8: a minf1;exp½Uðx0
G; x

0
LÞ � UðxG; xLÞ þ K

0
G þ K

0
L � KG � KL�g

. Accept or reject
9: u  one draw from uniform(0, 1)
10: if u < a then
11: return xG, xL, pG, pL
12: else
13: return x0

G; x
0
L; p

0
G; p

0
L

14: end if
15: end function
16: function LG-STEP(xG, xL, pG, pL, �, r)
17: xG, pG  LEAPFROG(xG, pG, �)
18: xL, pL  HzzTMVN(xG, pG, r�)
19: xG, pG  LEAPFROG(xG, pG, �)
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20: return xG, xL, pG, pL
21: end function
22: function LEAPFROG(xG, pG, �)
23: pG  pG þ �

2
rxG

log pðxÞ
24: xG  xG + �pG
25: pG  pG þ �

2
rxG

log pðxÞ
26: return xG, xL
27: end function

Results

To illustrate the broad applicability of our method, we detail three real-world applications and

discuss the scientific findings. We first apply our method to the HIV virulence application of

[8]. The improved efficiency allows us to estimate the across-trait partial correlation with ade-

quate effective sample size (ESS) and to reveal the conditional dependence among traits of sci-

entific interest. We use the same HIV data set to demonstrate that LG-HMC and LG-NUTS

outperform BPS (Section “Efficiency gain from the new inference scheme”), followed by two

more LG-NUTS applications on influenza and Aquilegia flower evolution. We conclude this

section with MCMC convergence criteria and timing results.

HIV immune escape

In the HIV evolution application of [8], a main scientific focus lies on the association between

HIV-1 immune escape mutations and virulence, the pathogen’s ability to cause disease. The

human leukocyte antigen (HLA) system is predictive of the disease course as it plays an impor-

tant role in the immune response against HIV-1. Through its rapid evolution, HIV-1 can

acquire mutations that aid in escaping HLA-mediated immune response, but the escape muta-

tions may reduce its fitness and virulence [30, 31]. [8] identify HLA escape mutations associ-

ated with virulence while controlling for the unknown evolutionary history of the viruses.

However, [8] interpret their results based on the across-trait correlation C which only informs

marginal associations that can remain confounded. Now armed with a more efficient inference

method, we direct our attention towards the across-trait partial correlation matrix R.

The data contain N = 535 aligned HIV-1 gag gene sequences collected from 535 patients

between 2003 and 2010 in Botswana and South Africa [31]. Each sequence is associated with 3

continuous and 21 binary traits. The continuous virulence measurements are replicative

capacity (RC), viral load (VL) and cluster of differentiation 4 (CD4) cell count. The binary

traits include the existence of HLA-associated escape mutations at 20 different amino acid

positions in the gag protein and another trait for the sampling country (Botswana or South

Africa). Fig 1 depicts across-trait correlations and partial correlations with posterior

medians > 0.2 (or < −0.2). Compared to correlations (Fig 1A), we observe more partial corre-

lations with greater magnitude (Fig 1B). They indicate conditional dependencies among traits

after removing effects from other variables in the model, helping to explore the causal pathway.

For example, we only detect a negative conditional dependence between RC and CD4. In

other words, holding one of CD4 and RC as constant, the other does not affect VL, suggesting

that RC increases VL via reducing CD4. The fact that RC is not found to share a strong condi-

tional dependence with VL may be explained by the strong modulatory role of immune system

on VL. Only when viruses with higher RC also lead to more immune damage, as reflected in

the CD4 count, higher VL may be observed as a consequence of less suppression of viral repli-

cation. As such, our findings are in line with the demonstration that viral RC impacts HIV-1

immunopathogenesis independent of VL [32].
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The partial correlation also helps to decipher epistatic interactions and how the escape

mutations and potential compensatory mutations affect HIV-1 virulence. For example, we

find a strong positive partial correlation between T186X and T190X. Studies have shown that

T186X is highly associated with reduced VL [33, 34] and it requires T190I to partly compen-

sate for this impaired fitness so the virus stays replication competent [35]. The negative condi-

tional dependence between T186X and RC and the positive conditional dependence between

Fig 1. (A) Across-trait correlation and (B) partial correlation with a posterior median> 0.2 or< −0.2 (in color). HIV gagmutation names start with

the wild type amino acid state, followed by the amino acid site number according to the HXB2 reference genome and end with the amino acid as a

result of the mutation (‘X’ means a deletion). Country = sample region: 1 = South Africa, -1 = Botswana; RC = replicative capacity; VL = viral load;

CD4 = CD4 cell count. (C) Conditional dependencies between HIV-1 immune escape mutations that affect RC or VL. Node and edge color indicates

whether the dependence is positive (orange) or negative (blue).

https://doi.org/10.1371/journal.pcbi.1011419.g001

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference of across-trait dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011419 August 28, 2023 11 / 22

https://doi.org/10.1371/journal.pcbi.1011419.g001
https://doi.org/10.1371/journal.pcbi.1011419


T190I and RC are consistent with this experimental observation. In contrast, with the strong

positive association between T186X and T190, the marginal association fails to identify their

opposite effects on RC. Another pair of mutations that potentially shows a similar interaction

is H28X and M30X, which have a positive and negative partial correlation with VL, respec-

tively. These mutations have indeed been observed to co-occur in gag epitopes from longitudi-

nally followed-up patients [36]. Fig 1B keeps all the other compensatory mutation pairs in Fig

1A such as A146X-I147X and A163X-S165X that find confirmation in experimental studies

[37, 38].

More generally, when considering the viral trait RC and the infection trait VL, for which

their variation are to a considerable extent attributable to viral genetic variation [39], we reveal

an intriguing pattern. As in Fig 1C, when two escape mutations impair virulence, and there is

a conditional dependence between them, it is always negative. When two mutations have

opposing effects on these virulence traits, the conditional dependence between them (if pres-

ent) is almost always positive, with one exception of the negative effect between V168I and

S357X. For example, T186X and I61X both have a negative impact on RC and the negative

effect between them suggests that their additive, or even potentially synergistic, impact on RC

is inhibited. Moreover, they appear to benefit from a compensatory mutation, T190X, which

has been corroborated for the T186X-T190X pair at least as reported above. Also for VL, the

conditional dependence between mutations that both have a negative impact on this virulence

trait is consistently negative. Several of these individual mutations may benefit from H28X as a

compensatory mutation, as indicated by the positive effect between pairs that include this

mutation, and as suggested above for H28X—M30X. This illustrates the extent to which escape

mutations may have a negative impact on virulence and the need to evolve compensatory

mutations to restore it. We note that our analysis is not designed to recover compensatory

mutations at great length as we restrict it to a limited set of known escape mutations, while

mutations on many other sites may be compensatory. In fact, our analysis suggests that some

of the considered mutations may be implicated in immune escape due to their compensatory

effect rather than a direct escape benefit.

Efficiency gain from the new inference scheme

We demonstrate that the joint update of latent variables X and the covariance matrix O signifi-

cantly improve inference efficiency. For this purpose we use the large HIV dataset from Sec-

tion “HIV immune escape” with N = 535, Pdisc = 21, Pcont = 3, where the efficiency gain

becomes significant. Our implementations of the algorithms have been validated on smaller

truncated MVNs, on which simple rejection sampling can provide the ground truth up to

quantifiable Monte Carlo errors. The Zigzag-HMC implementation has also been validated

through the standalone implementation in an R package “htdg” [40].

We consider 4 sampling schemes BPS, Zigzag-HMC, LG-HMC, and LG-NUTS. To enable

a more direct comparison while saving computational time, we separate tree inference from

the inference forO and X and fix F as the maximum clade credibility tree from the HIV

immune escape application. BPS and Zigzag-HMC only update X and we use the standard

NUTS transition kernel (i.e. standard HMC combined with no-U-turn algorithm) for the O

elements. LG-HMC employs the joint update of X and O described in Section “Jointly updat-

ing latent variables and across-trait covariance”. LG-NUTS additionally employs the No-

U-Turn algorithm to decide the number of steps and a primal-dual averaging algorithm to cal-

ibrate the step size. We set the same ttotal for BPS and Zigzag-HMC for a fair comparison. To

tune LG-HMC, we first supply it with an optimal step size � learned by LG-NUTS, then decide

the number of stepsm = 100 as it gives the best performance among the choices (10, 100,
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1000). We conduct 3 independent simulations for each sampling scheme and report the per-

run-time ESS for 5 parameters—the across-trait correlation C, partial correlation R, latent var-

iable X, log joint density log p(X, O) and log likelihood l(X, O). C and R are of primary scien-

tific interest as they provide insights into correlation structure among the traits. Examining

ESS of the highest dimensional parameter X is also important for diagnostic purposes. ESS’s of

log p(X, O) and l(X, O) help us additionally evaluate how well the samplers explore the target

distribution overall. As reported in Table 1, BPS is outperformed by the three other samplers

in terms of efficiency for all five parameters. While a formal theoretical analysis is beyond the

scope of this work, we provide an empirical explanation for the different performances of BPS

and Zigzag-HMC in S2 File. LG-HMC achieves the highest per run-time ESS for R, resulting

in a 5× speed-up compared to BPS. The result also highlights that inferring R is more challeng-

ing than inferring C, with the elements of R generally having lower ESS, but the difficulty can

be largely eliminated by jointly updating X and O through LG-HMC and LG-NUTS. Although

Zigzag-HMC achieves much higher ESS for X than LG-HMC, the latter performs best in the

most difficult and critical task of updating R. Compared to LG-HMC, LG-NUTS exhibits

lower efficiency and higher variance across the 3 runs, likely due to the No-U-Turn algorithm’s

tendency to require some extraneous leapfrog steps [41, 42]. We also provide the histograms

for the per run-time ESS of R elements in S1 Fig. Based on our findings, we recommend using

LG-HMC with multiple choices of hyper parameters (m, �), with a good starting point being

(100, 0.01), or the auto-tuned LG-NUTS.

Glycosylation of Influenza A virus H1N1

Influenza A viruses of the H1N1 subtype currently circulate in birds, humans, and swine [43–

45], where they are responsible for substantial morbidity and mortality [46, 47]. The two

Table 1. Efficiency comparison among different sampling schemes (BPS, Zigzag-HMC, LG-HMC, LG-NUTS). We calculate effective sample size (ESS) per hour run-

time for the elements of C, R, X, log joint density log p(X,O), and likelihood l(X,O). For the three multivariate parameters (C, R, X) with dimensions 276, 276, and 11,235,

respectively, we report the minimal ESS across all dimensions. We conduct three independent simulations for each method and report the ESS values in the first three

rows. We include the mean and standard deviation in the last row for each method to provide a summary of its overall performance. The bold number indicates the highest

value in each of the five columns. For BPS, given the larger number of iterations required to achieve convergence, we record one sample of X every 1,000 iterations to com-

ply with storage limitations, and report upper bounds of the actual ESS by multiplying the ESS from thinned samples by 1,000.

ESS/hour C(276d) R(276d) X (11,235d) log p(X, O) l(X, O)

BPS 6.05 1.46 < 760* 0.56 0.56

5.86 2.41 < 670 0.52 0.52

0.55 0.49 < 100 0.42 0.43

4.16(3.13) 1.45(0.96) - 0.5(0.07) 0.5(0.07)

Zigzag-HMC 13.75 2.23 1480 4.42 4.44

7.79 2.36 1057 5.38 5.38

14.9 2.53 927 5.16 5.2

12.15(3.82) 2.37(0.15) 1155(289) 4.99(0.5) 5.01(0.5)

LG-HMC 8.26 7.33 4.92 4.79 4.81

7.11 8.59 7.76 5.09 5.1

7.44 6.49 4.46 5.33 5.34

7.6(0.59) 7.47(1.06) 5.71(1.79) 5.07(0.27) 5.08(0.26)

LG-NUTS 1.31 1.29 1.69 0.7 0.7

11.93 7.52 6.37 1 1.06

7.77 6.09 2.64 2.71 2.72

7.01(5.35) 4.97(3.26) 3.57(2.47) 1.47(1.09) 1.49(1.07)

* The ESS estimates after 1/1000 thinning are 0.76, 0.67, 0.10

https://doi.org/10.1371/journal.pcbi.1011419.t001
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surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) interact with a cell surface

receptor and so their characteristics largely affect virus fitness and transmissibility. Mutations

in the HA and NA, particularly in their immunodominant head domain, sometimes produce

glycosylations that shield the antigenic sites against detection by host antibodies and so help

the virus evade antibody detection [48–51]. On the other hand, glycosylation may interfere

with the receptor binding and also be targeted by the innate host immunity to neutralize

viruses. Therefore there must be an equilibrium between competing pressures to evade

immune detection and maintain virus fitness [52, 53]. The number of glycosylations that leads

to this balance is expected to vary in host species experiencing different strengths of immune

selection. Despite decades of tracking IAVs evolution in humans for vaccine strain selection

and recent expansions of zoonotic surveillance, the evolvability and selective pressures on the

HA and NA have not been rigorously compared across multiple host species. Here, we exam-

ine the conditional dependence between host type and multiple glycosylation sites by estimat-

ing the posterior distribution of across-trait partial correlation while jointly inferring the IAVs

evolutionary history.

We use hemagglutinin (H1) and neuraminidase (N1) sequence data sets for influenza A

H1N1 produced by Trovão et al. as described in [54]. We scan all H1 and N1 sequences to

identify potential N-linked glycosylation sites, based on the motif Asn-X-Ser/Thr-X, where X

is any amino acid other than proline (Pro) [55]. We then set a binary trait for each sequence

encoding for the presence or absence of glycosylations at a particular amino acid site. We keep

sites with a glycosylation frequency between 20% and 80% for our analysis. This gives six sites

in H1 and four sites in N1. We include another binary trait for the host type being mammalian

(human or swine) or avian, so the sample sizes are N = 964, P = 7 (H1) and N = 896, P = 5

(N1).

The six H1 glycosylation sites consist of three pairs that are physically close (63/94, 129/163,

and 278/289, see Fig 2). Sites 63 and 94 are particularly close to each other, though distances

will vary slightly with sequence. A negative conditional dependence suggests glycosylation at

two close sites may be harmful for the virus (63/94 and 278/289) while a positive effect between

two sites suggests a potential benefit (63/129 and 94/278). We detect a negative conditional

dependence between mammalian host and glycosylation site 94 and 289. Avian viruses have a

stronger tendency to have site 289 glycosylated (Fig 2).

In N1, glycosylations are more strongly correlated than H1 (Fig 3). Two pairs of glycosyla-

tion sites have a positive conditional dependency in between (50/68 and 50/389) and two pairs

(44/68 and 68/389) have a negative one. We omit a structural interpretation since all sites but

389 are located in the NA stalk, for which no protein structure is available. There is a positive

conditional dependence between mammalian host and glycosylations at sites 44 and 68. None

of the avian lineages has glycosylation site 44 while most swine and some human lineages have

it. Similarly, glycosylation at site 68 is present in most swine and human lineages but only in

avian lineages circulating in wild birds, not those in poultry.

Aquilegia flower and pollinator co-evolution

Reproductive isolation allows two groups of organisms to evolve separately, eventually forming

new species. For plants, pollinators play an important role in reproductive isolation [56]. We

examine the relationship between floral phenotypes and the three main pollinators for the col-

umbine genus Aquilegia: bumblebees, hummingbirds, and hawk moths [18]. Here, the pollina-

tor species represents a categorical trait with three classes and we choose bumblebee with the

shortest tongue as the reference class. Fig 4 provides the across-trait correlation and partial

correlation. Compared to a similar analysis on the same data set that only looks at correlation
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or marginal association [1], partial correlation controls confounding and indicates the condi-

tional dependencies between pollinators and floral phenotypes that can bring new insights.

For example, we observe a positive marginal association between hawk moth pollinator and

spur length but no conditional dependence between them. The marginal association matches

Fig 2. (A) Across-trait partial correlation among H1 glycosylation sites and host type with a posterior median> 0.2 or< −0.2 (in color and number).

(B) HA structure of a 2009 H1N1 influenza virus (PDB entry 3LZG) with six glycosylation sites highlighted. Site 278 and 289 are in the stalk domain

and all others are in the head domain. (C) The maximum clade credibility (MCC) tree with branches colored by the posterior median of the latent

variable underlying H1 glycosylation site 289. The heatmap on the right indicates the host type of each taxon.

https://doi.org/10.1371/journal.pcbi.1011419.g002
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with the observation that flowers with long spur length have pollinators with long tongues [18,

57]. The absence of a conditional dependence makes intuitive sense because hawk moth’s long

tongue is not likely to stop them from visiting a flower with short spurs when the other floral

traits are held constant. In fact, researchers observe that shortening the nectar spurs does not

affect hawk moth visitation [58]. Similarly, the positive partial correlation between orientation

and hawk moth also finds experimental support. The orientation trait is the angle of flower

axis relative to gravity, in the range of (0, 180). A small orientation value implies a pendent

flower whereas a large value represents a more upright flower [59]. Due to their different mor-

phologies, hawk moths prefer upright flowers while hummingbirds tend to visit pendent ones.

Fig 3. (A) Across-trait partial correlation among N1 glycosylation sites and host type with a posterior median> 0.2 or< −0.2 (in color and number).

(B)(C) The maximum clade credibility (MCC) tree with branches colored by the posterior median of the latent variable underlying N1 glycosylation site

44 and 68.

https://doi.org/10.1371/journal.pcbi.1011419.g003
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Making the naturally pendent Aquilegia formosa flowers upright increases hawk moth visita-

tion [59]. These results suggest that partial correlation may have predictive power for results

from carefully designed experiments with controlled variables.

MCMC setup and convergence assessment

We run all simulations on a node equipped with AMD EPYC 7642 server processors which

possess 48 cores and 96 threads, with a base clock speed of 2.3 GHz. For every MCMC run, the

minimal effective sample size (ESS) across all dimensions of X and R after burn-in is above

100. As another diagnostic, for our two large-scale applications on HIV-1 and H1N1 influenza,

we run three independent chains and confirm the potential scale reduction statistic R̂ for all

partial correlation elements falls between [1, 1.03], below the common criterion of 1.1 [60]. To

reach a minimal ESS = 100 across all R elements, the post burn-in run-time and number of

MCMC transition kernels applied for the joint inference are 21 hours and 1.3 × 106 (HIV-1),

113 hours and 7.9 × 107 (H1), 76 hours and 1.4 × 108 (N1). These run-times suggest the diffi-

culty of our large-scale inference tasks where besides the main challenge of sampling {X, C, D},

updating the many tree parameters with Metropolis-Hastings transition kernels also takes a

large number of iterations. To reduce the computational burden associated with tree inference,

one practical approach is to utilize a set of pre-computed trees and incorporate tree swaps

within the MCMC transition kernel.

Discussion

Learning how different biological traits interact with each other from many evolutionarily

related taxa is a long-standing problem of scientific interest that sheds light on various aspects

of evolution. Towards this goal, we develop a scalable solution that significantly improves

inferential efficiency compared to established state-of-the-art approaches [1, 8]. Our novel

strategy enables learning across-trait conditional dependencies that are more informative than

Fig 4. Across-trait correlations (A) and partial correlations (B) with posterior medians> 0.2 or< −0.2 (in color). BB = bumblebee.

https://doi.org/10.1371/journal.pcbi.1011419.g004
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the previous marginal association based analyses. This approach provides reliable estimates of

across-trait partial correlations for large problems, on which the established BPS-based

method struggles. In two large-scale analyses featuring HIV-1 and H1N1 influenza, the

improved efficiency allows us to infer conditional dependencies among traits of scientific

interest and therefore investigate some of the most important molecular mechanisms underly-

ing the disease. In addition, our approach incorporates automatic tuning, so that the most

influential tuning parameters automatically adapt to the specific challenge the target distribu-

tion presents. Finally, we extend the phylogenetic probit model to include categorical traits

and illustrate its use in examining the co-evolution of Aquilegia flower and pollinators.

We leverage the cutting-edge Zigzag-HMC [13] to tackle the exceedingly difficult computa-

tional task of sampling from a high-dimensional truncated normal distribution in the context

of the phylogenetic probit model. Zigzag-HMC proves to be more efficient than the previously

optimal approach that uses the BPS, especially when combined with differential operator split-

ting to jointly update two sets of parameters X and O that are highly correlated. The improved

efficiency allows us to obtain reliable estimates of the conditional dependencies among traits.

In our applications, we find that these conditional dependencies better describe trait interac-

tions than do the marginal associations. It is worth mentioning that another closely related

sampler, the Markovian zigzag sampler [61], or MZZ, may also be appropriate for this task but

provides lower efficiency than Zigzag-HMC [24]. While Zigzag-HMC is a recent and less

explored version of HMC, BPS and MZZ are two central methods within the piecewise deter-

ministic Markov process literature that have attracted growing interest in recent years [62, 63].

Intriguingly, the most expensive step of all three samplers is to obtain the log-density gradient,

and the same linear-order gradient evaluation method [8] largely speeds it up.

We now consider limitations of this work and the future directions to which they point.

First, the phylogenetic probit model does not currently accommodate a directional effect

among traits since it only describes pairwise and symmetric correlations. However, the real

biological processes are often not symmetric but directional, where it is common that one

reaction may trigger another but not the opposite way. A model allowing directed paths is

preferable since it better describes the complicated causal network among multiple traits.

Graphical models with directed edges [64] are commonly used to learn molecular pathways

[65, 66], but challenges remain to integrate these methods with a large and randomly distrib-

uted phylogenetic tree. Toward this goal, one may construct a continuous-time Markov chain

to describe how discrete traits evolve [67, 68], but with P binary traits the transition rate matrix

grows to the astronomical size 2P. Second, though our method achieves the current best infer-

ence efficiency under the phylogenetic probit model, there is still room for improvement. In

the influenza glycosylation example, we use a binary trait indicating the host being either avian

or mammal (human or swine), instead of setting a categorical trait for host type. In fact, we

choose not to use a three-class host type trait because it causes poor mixing for the partial cor-

relation elements. We suspect two potential reasons for this. First, according to our model

assumptions for categorical traits (Eq 2), the latent variables underneath the same trait are very

negatively correlated, leading to a more correlated and challenging posterior. Second, in our

specific data sets, the glycosylation sites tend to be similar in human and swine viruses, further

increasing the correlation among posterior dimensions. One potential solution is to de-corre-

late some latent variables by grouping them into independent factors using phylogenetic factor

analysis [69, 70]. Finally, one may consider a logistic or softmax function to map latent vari-

ables to the probability of a discrete trait. This avoids the hard truncations in the probit model

but also adds another layer of noise. It requires substantial effort to develop an approach that

overcomes the above limitations while supporting efficient inference at the scale of applica-

tions in this work.
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