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Abstract: With a growing interest in using non-representative samples to train prediction models for
numerous outcomes it is necessary to account for the sampling design that gives rise to the data in order
to assess the generalized predictive utility of a proposed prediction rule. After learning a prediction rule
based on a non-uniform sample, it is of interest to estimate the rule’s error rate when applied to unobserved
members of the population. Efron (1986) proposed a general class of covariance penalty inflated prediction
error estimators that assume the available training data are representative of the target population for
which the prediction rule is to be applied. We extend Efron’s estimator to the complex sample context by
incorporating Horvitz–Thompson sampling weights and show that it is consistent for the true generaliza-
tion error rate when applied to the underlying superpopulation. The resulting Horvitz–Thompson–Efron
estimator is equivalent to dAIC, a recent extension of Akaike’s information criteria to survey sampling
data, but is more widely applicable. The proposed methodology is assessed with simulations and is
applied to models predicting renal function obtained from the large-scale National Health and Nutrition
Examination Study survey. The Canadian Journal of Statistics 48: 204–221; 2020 © 2019 Statistical
Society of Canada
Résumé: En raison de l’intérêt grandissant porté aux échantillons non représentatifs pour l’apprentissage de
modèles de prévision, il devient nécessaire de tenir compte du plan d’échantillonnage ayant servi à obtenir
des données en vue de décrire l’utilité prédictive généralisée des règles de prévision qui en découlent.
Lorsqu’une règle de prévision est basée sur des données dont l’échantillonnage n’est pas uniforme, il est
pertinent d’évaluer le taux d’erreur de la règle pour des membres non observés de la population. Efron (1986)
a proposé une classe générale d’estimateurs pénalisés à erreur de prévision gonflée sous l’hypothèse
que les données d’apprentissage sont représentatives de la population cible. Les auteurs généralisent
l’estimateur d’Efron au contexte d’échantillonnage complexe en y incorporant les poids d’échantillonnage
de Horvitz-Thompson. Ils montrent que leur approche converge vers le vrai taux d’erreur généralisé lorsque
appliquée à la superpopulation sous-jacente. L’estimateur de Horvitz-Thompson-Efron (HTE) qui en résulte
est équivalent au dAIC, une récente extension de l’AIC pour les données d’échantillonnage, mais il est plus
largement applicable. Les auteurs évaluent leur méthode par des simulations et l’appliquent à des modèles
prédisant la fonction rénale en se servant de données obtenues de l’enquête à grande échelle NHANES. La
revue canadienne de statistique 48: 204–221; 2020 © 2019 Société statistique du Canada
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1. INTRODUCTION

The goal of building prediction models using empirical samples has become ubiquitous
throughout all areas of business and science. With the exponential rise in statistical and
machine learning methods for training flexible prediction models, increasing interest has been
devoted to assessing the extra-sample (Efron & Tibshirani, 1997) performance of candidate
models when they are applied to unobserved members of the population of interest. Analytic
assessments of the performance of a prediction rule commonly focus on the expected loss asso-
ciated with the rule, where the expectation is taken with respect to the underlying distribution of
a new, independently sampled response conditional upon the observed support of the sampled
predictors giving rise to the rule (Hastie, Tibshirani & Friedman, 2001). It is widely recognized
that computation of the loss function solely based on the training sample is optimistically biased
for this expectation.

Statisticians have developed a number of techniques to adjust for this bias and thus ascertain
extra-sample prediction performance. In this article, we are interested in a class of unbiased
estimators obtained by inflating the observed prediction error by a “covariance penalty.” In
linear regression under squared-error loss, Mallows’ Cp (Efron, 1986) inflates the observed
mean squared error by the covariance between each observed response and its fitted value.
Relying on a similar covariance penalty, Stein’s unbiased risk estimator is unbiased for mean
squared error for differentiable prediction rules under Gaussian errors (Stein, 1981). Akaike’s
information criteria (AIC) (Akaike, 1998) penalizes the observed negative log-likelihood (or
deviance) by a term that is asymptotically equivalent to a covariance penalty and thus achieves
an asymptotically unbiased prediction error estimate. A more general treatment of covariance
penalty inflated estimators for arbitrary prediction rules and loss functions has been considered
by Efron (1986, 2004).

But how do we ascertain extra-sample prediction performance when the data themselves
are biased? Ignoring complex, non-uniform, unbalanced or otherwise biased sampling will
cause these “unbiased” estimators to be biased for future data arising from the true population
of interest. Policy makers, economists, statisticians, and health care professionals will choose
sub-optimal prediction rules and make sub-optimal predictions.

Biased samples are common. Non-uniform random sampling designs are commonly employed
throughout multiple empirical sciences because they afford researchers greater efficiency in
estimating parameters specific to less prevalent sub-populations. Classic examples of complex
sampling designs include those implemented by the United States Census Bureau (United
States Bureau of the Census, 2000) and the National Health and Nutrition Examination Study
(NHANES) (National Center For Health Statistics, 1996). In each case, specific sub-populations
are over-sampled by design and sampling weights are used to correct population prevalence
estimates and draw inference for estimands at the population level.

Despite the growing interest in prediction modelling, there is a paucity of prediction error
estimators for data arising from such complex sampling designs. This dearth is not for a lack
of need. Prediction models trained on health survey data are common and of interest within
the medical and health-care communities. For example, Wang et al. (2015) propose statistical
modelling methodologies for forecasting based on non-representative samples but does not
propose any sort of model comparison criterion that would take sample complexity into account.
Yu et al. (2010) train support vector machine models using the NHANES survey to predict
diabetes (and boasts 140 citations). Zhang, Huang & Wang (2016) use NHANES to train
a predictive model for peripheral arterial disease, and Zhang et al. (2017) did the same for
predicting atherosclerotic cardiovascular disease mortality. There are many, many more such
examples we do not list here.

We address this deficiency by extending Efron’s covariance penalty inflated prediction error
estimator to account for complex data. The resulting estimator provides a unified framework for
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prediction model assessment that can be used for arbitrary loss functions and can be applied
to regression based predictive models as well as algorithmically deduced prediction rules such
as random forests and k-nearest neighbour (kNN) approaches. We establish consistency for the
true error rate relative to the super-population and further show equivalence to dAIC (Lumley
& Scott, 2015), an extension of AIC for survey samples, as a special case in the context of
generalized linear regression models (GLM) (McCullagh & Nelder, 1989).

2. PREDICTION ERROR ESTIMATION FOR SIMPLE RANDOM SAMPLES

We begin with the classic problem of estimating the prediction error rate where data, (y, X), are
obtained via a simple random sample with y denoting the vector of outcomes of interest obtained
on multiple sampling units and X denoting a matrix of explanatory variables on sampling units.
Assume that an unknown data generating mechanism defined by g has produced y, from which we
estimate the expectation 𝜇 = Eg(y) with �̂� = m(y), where m(⋅) is an arbitrary function potentially
obtained from the data. The in-sample error is given by

err ≡
1
n

n∑
i=1

erri =
1
n

n∑
i=1

Q
(
yi, �̂�i

)
, (1)

where n is the length of y, the number of observations and Q(⋅, ⋅) denotes a specified loss function.
Given the in-sample error, a common goal is to estimate

Err ≡
1
n

n∑
i=1

Erri =
1
n

n∑
i=1

E0 Q
(
y0

i , �̂�i
)

(2)

for fixed �̂�i. Here E0 denotes the expectation over an unobserved random variable y0
i drawn

independently from mechanism g but conditioning on observed support xi. Note that although
y0

i shares the same covariates xi as observation yi, the true data generating mechanism g may or
may not be a function of observed covariates. Typically, err is a biased estimate for Err, but a
correction is available by way of the covariance penalty.

2.1. The Covariance Penalty Inflated Estimator
Covariance penalty inflated prediction error estimators are unbiased for extra-sample prediction
error. We assume that the loss function Q(⋅, ⋅) belongs to the q-class of loss functions (Efron,
1986). A member of the q-class of loss functions is constructed from some concave function
q(⋅). Given this function, the error for outcome yi and prediction �̂�i is given by

Q(yi, �̂�i) = q(�̂�i) + q̇(�̂�i) (yi − �̂�i) − q(yi),

where q̇(⋅) is the derivative of q(⋅). This is not a limiting assumption. For example, the
deviance functions of exponential family distributions belong to this class. Suppose yi follows
an exponential family distribution

g𝜇i
(yi) = exp

(
𝜆i yi − 𝜓(𝜆i)

)
.

Here, 𝜆i is the natural parameter, 𝜓 enforces density function integration constraints and 𝜇i and
𝜆i are related by canonical link functions. Then the choice

q(yi) = 2
(
𝜓(�̂�i) − yi �̂�i

)
, (3)
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with �̂�i estimated from the observed data, renders the deviance (McCullagh & Nelder, 1989) as
in-sample error:

err = 1
n

n∑
i=1

Q
(
yi, �̂�i

)
= 2

n

(
log gy(y) − log g�̂�(y)

)
, (4)

where gy(⋅) and g�̂�(⋅) are the exponential family likelihoods with mean parameters y and �̂�,
respectively. Note that since only the second term in the deviance depends on estimate �̂�, one
may also consider concave function (3) as inducing the negative log-likelihood loss. Since the
in-sample error is often an underestimate of Err, we define the

Optimism Oi = Oi(g, y) = Erri − erri,

and the

Expected optimism Ωi(g) = Eg Oi(g, y).

If one is able to obtain a consistent estimate of the optimism pertaining to a prediction rule, then
the true generalization error may be estimated by adding the estimated optimism to the in-sample
error err. Within the q-class of loss functions, the optimism can be analytically estimated using
the term

�̂�i = −q̇(�̂�i)∕2.

When Q(y, �̂�) is the deviance for an exponential family distribution, �̂�i is the estimated natural
parameter for the ith observation (Efron, 1986, 2004). Indeed, the following result identifies the
expected optimism with the covariance between y and �̂�.

Theorem 2.1 (The optimism theorem (Efron, 1986, 2004)). For error measure Q(y, �̂�), we
have

Eg(Erri) = Eg(erri + Ωi),

where

Ωi = 2 covg(yi, �̂�i). (5)

It is a corollary (Efron, 1986) that when �̂� is the MLE of 𝜇 for a correctly specified GLM,
and when prediction error is given by the deviance, then

1
n

n∑
i=1

Ωi = Eg
(
Err − err) ≈ 2 p∕n (6)

for p the number of model parameters. This approximation is obtained through the Taylor
expansion of the link function and is exact for the Gaussian case. Following Equation (6) the
reader might not be surprised that the unbiased estimator arising from Formula (5) is at least
asymptotically equivalent to AIC (Efron, 1986). The same article discusses the scenarios in which
analytic estimators of the covariance penalty are available and how the parametric bootstrap may
be used when they are not.
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3. PREDICTION ERROR ESTIMATION FOR COMPLEX SAMPLES

While the covariance penalty inflated prediction error estimation procedure is useful for prediction
rules derived from simple random samples, it is no longer accurate in a complex sample context.
Hence, there is a need for a modified prediction error estimator that is applicable to models based
on, say, large-scale health surveys or political polling. We now consider how to incorporate
knowledge about the complex sampling design giving rise to data for accurate estimation of Err.

In the following, we make use of the superpopulation framework (Horvitz & Thompson,
1952) for finite population analysis. That is, we assume that the finite population y1,… , yN is
generated independently (not necessarily identically) by the same mechanism g, and that the
data are then obtained via a (not necessarily uniform) sampling distribution, denoted 𝜋, where
𝜋i = Pr(yi ∈ s), for sample s. Note that in prior sections we used g to denote the distribution
producing the data, but we now use the same symbol to denote the distribution producing the
finite population.

If we know covg(�̂�i, yi)—or if we can obtain a consistent estimate of it—then Theorem 2.1
provides an analytic, consistent estimator of Erri in the case of uniform sampling. However, if the
individual yis are collected according to a non-uniform sampling scheme with known or estimable
sampling probabilities, it is still possible to obtain consistent estimates of generalization error
by incorporating Horvitz–Thompson (HT) sampling weights into the error estimate. In order to
address this issue, we must distinguish between different kinds of generalization error for the
finite population framework. We now use Err to denote the finite population prediction error rate:

Err = 1
N

N∑
i=1

Q(yi, �̂�i) .

The superpopulation prediction error rate is the expected value of the finite population error rate
Eg(Err). Next, define the Horvitz–Thompson–Efron (HTE) estimator of the predictive error rate

Êrr = 1
N

n∑
i=1

1
𝜋i

(
erri + 2 covg(�̂�i, yi)

)
,

where
∑n

i=1 1∕𝜋i = N, and erri is the same as in Equation (1). The following corollary follows
easily from Theorem 2.1.

Corollary 3.1 (Optimism theorem for biased samples). The HTE estimator Êrr is unbiased
for the superpopulation generalization error, that is,

E(Êrr) = Eg(Err).

Proof. Let E𝜋 denote expectation with respect to sampling mechanism. Then,

E(Êrr) = E𝜋,g
( 1

N

n∑
i=1

1
𝜋i

(
erri + 2 covg(�̂�i, yi)

))

= Eg

( 1
N

N∑
i=1

1
𝜋i

E𝜋|g(Ii∈s)
(
erri + 2 covg(�̂�i, yi)

))

= Eg

( 1
N

N∑
i=1

(
erri + 2 covg(�̂�i, yi)

))
= Eg(Err) ,

where the last equality results from Theorem 2.1 and the linearity of the expectation operator. ◼
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Thus, the HT extension (HTE) of the covariance penalty inflated estimator gives an unbiased
estimator for the superpopulation prediction error irrespective of sample design. As a simple

application of the law of large numbers, we know that Err
a.s.
→ Eg(Err), and hence in the limit as

n,N → ∞ we have that Êrr is consistent for finite population generalization error Err. For more
details on asymptotics of the superpopulation framework see Fuller (2011, Section 1.3).

3.1. dAIC and the HTE
Efron (1986) shows that AIC and the covariance penalty inflated estimator of prediction error
are asymptotically equivalent. Here, we show the same is true for our HTE estimator and dAIC
(Lumley & Scott, 2015), a reweighted extension of AIC that accounts for complex sampling. We
introduce dAIC in detail in the Appendix, and only provide a brief example here after proving
the main result.

The design based AIC is

dAIC = −2𝓁(�̂�) + 2 tr
{
̂ (�̂�)V̂(�̂�)

}
,

where the first term is proportional to the HT reweighted likelihood

𝓁(𝜃) = 1
N

n∑
i=1

wi 𝓁i(𝜃),

and the second term is the trace of the matrix product of

̂ (𝜃) = − 1
N

n∑
i=1

wi
𝜕2𝓁i(𝜃)
𝜕𝜃𝜕𝜃T

,

the HT reweighted log-likelihood Hessian and V̂(�̂�), the regular “sandwich” estimator of the
asymptotic covariance of the MLE. The Appendix contains a thorough summary of dAIC and its
terms, and “Example: linear regression model based on weighted independent sample” section
provides a worked example.

In the following theorem we establish the canonical result that, under non-uniform sampling,
dAIC is a special case of the HTE estimator for standard GLMs.

Theorem 3.2 (Equivalence of dAIC and HTE). The dAIC and HTE penalty terms correspond
exactly, provided that: (i) a GLM with canonical link is specified; (ii) the weighted deviance loss
is used and the model is fit by minimizing this loss function (which corresponds to maximizing
the weighted log-likelihood).

Proof. Let 𝜆 and 𝜇 denote the natural and mean parameters of the exponential family model

g𝜇(y) = exp
(
𝜆 y − 𝜓(𝜆)

)
.

Given observations (yi, xi), i = 1,… , n, we adopt the GLM framework and assume that, for each
observation, the canonical parameter is given by a linear combination of covariates: 𝜆i = xT

i 𝜃.
We show that the dAIC penalty is equal to the HTE penalty, that is, that

tr
(
V̂(�̂�) ̂ (�̂�)

)
= 1

N

n∑
i=1

1
𝜋i

ĉov(�̂�i, yi),
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when the estimate ĉov is obtained using the analytic estimate (below) and not obtained from
the parametric bootstrap (although similar estimates are obtained in practice). We first use the
following two facts about exponential family distributions to obtain the forms of ̂ (�̂�) and V̂U(�̂�):

𝜕𝜓

𝜕𝜆
= 𝜇 and

𝜕𝜇

𝜕𝜆
= 𝜕2𝜓

𝜕𝜆2
= cov𝜇(y). (7)

Let Π be the n by n diagonal matrix with Πii = 𝜋i. ̂ (�̂�) is defined as the HT weighted, observed
Fisher information:

̂ (�̂�) = − 1
N

n∑
i=1

1
𝜋i

𝜕2𝓁i(𝜃)
𝜕𝜃𝜕𝜃T

= 1
N

XT (Π−1 𝜕
2𝜓

𝜕𝜆2
||�̂�)X

= 1
N

XT (Π−1Σ̂M)X.

Here Σ̂M = Σ(�̂�) is a diagonal matrix with elements given by the model-based covariances
Σ(�̂�)ii = cov�̂�i

(yi). Now, V̂U(�̂�) takes the form

1
N2

XTΠ−1Σ̂O Π−1X,

for Σ̂O a matrix of observed residuals with specific form depending on sample characteristics
(see Appendix).

Next we need a formula for �̂�. Suppose that �̂� is obtained by maximizing the weighted
log-likelihood. Then �̂� takes the form of the WLS solution

�̂� = (XT (Σ̂MΠ−1)X)−1XT (Σ̂MΠ−1)z, (8)

where z is the linearization of the canonical link applied to y called the “adjusted dependent
variable” or the “working residual”:

z = �̂� + (y − �̂�) 𝜕𝜆
𝜕𝜇

|||�̂� . (9)

Combining the formulas gives

tr
(
V̂(�̂�) ̂ (�̂�)

)
= tr

(
V̂U(�̂�) ̂ (�̂�)−1)

= 1
N

tr
(

XT (Π−1Σ̂OΠ−1)X
(
XT (Σ̂MΠ−1)X

)−1
)

= 1
N

tr
(
Π−1 X

(
XT (Σ̂MΠ−1)X

)−1XTΠ−1Σ̂MΣ̂−1
M Σ̂O

)

= 1
N

tr
(
Π−1 X

(
XT (Σ̂MΠ−1)X

)−1XTΠ−1Σ̂M
𝜕𝜆

𝜕𝜇
|�̂� Σ̂O

)

= 1
N

tr
(
Π−1 X

(
XT (Σ̂MΠ−1)X

)−1XTΠ−1Σ̂M ĉov(z, y)
)

= 1
N

tr
(
Π−1ĉov(�̂�, y)

)
= 1

N

n∑
i=1

1
𝜋i

ĉov(�̂�i, yi),

completing the proof. ◼
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Example: linear regression model based on weighted independent sample
Let 𝑓𝜃(y|x) be the homoscedastic linear regression model with Gaussian errors and regression
coefficients 𝜃. Then

�̂� = (XTΠ−1X)−1XTΠ−1Y ,

and

̂ (�̂�) = (XTΠ−1X)∕(N�̂�2). (10)

where X is the n × p observed design matrix. Next, the estimated covariance matrix of �̂� is given
by

V̂(�̂�) = (N�̂�2)(XTΠ−1X)−1

×
XTΠ−1Diag

(
(Y − X�̂�)(Y − X�̂�)T

)
Π−1X

(N�̂�2)2
(XTΠ−1X)−1(N�̂�2)

= (XTΠ−1X)−1XTΠ−1Σ̂O Π−1X(XTΠ−1X)−1.

for Σ̂O = Diag
(
(Y − X�̂�)(Y − X�̂�)T

)
. The design-effect corrected penalty term is then given by

tr
{
̂ (�̂�)V̂(�̂�)

}
= tr

{
(XTΠ−1X)

× (XTΠ−1X)−1XTΠ−1Σ̂O Π−1X(XTΠ−1X)−1}∕(N�̂�2)

= tr
{

XTΠ−1Σ̂O Π−1X(XTΠ−1X)−1}∕(N�̂�2).

It follows that the dAIC for the classical linear regression case is given by

1
N

n∑
i=1

(yi − �̂�i)2

𝜋i �̂�
2

+ 2
N�̂�2

tr
{

XTΠ−1Σ̂O Π−1X(XTΠ−1X)−1}. (11)

We now derive the HTE estimator and show it to be the same. Let

erri = Q(yi, �̂�i) = (yi − �̂�i)2

be the loss function, then the inflation term for the HTE estimator is given by

1
N

n∑
i=1

2
𝜋i

ĉovg(�̂�i, yi) =
2
N

n∑
i=1

1
𝜋i

(
X(XTΠ−1X)−1XTΠ−1Σ̂O

)
ii

= 2
N

tr
{
Π−1X(XTΠ−1X)−1XTΠ−1Σ̂O

}
.

By the cyclic property of the trace, one has

̂Err = 1
N

n∑
i=1

1
𝜋i
(yi − �̂�i)2 +

2
N

tr
{

XTΠ−1Σ̂O Π−1X(XTΠ−1X)−1} (12)

= dAIC ⋅ �̂�2.

Thus equivalence between the covariance penalty inflated prediction error estimator and dAIC
clearly holds in this context. This is expected as a special case of Theorem 3.2.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



212 HOLBROOK, LUMLEY AND GILLEN Vol. 48, No. 2

TABLE 1: Data generation schemes. For Scenario 1, the distribution of response yi
N is independent of the

sampling probability 𝜋i. In Scenario 2, the predictor influences the mean and variance of yi
N , but is

independent from the sampling probability. For Scenario 3, the distributions of yi
N and 𝜋i both depend on

the index i. For Scenario 4, the distributions of yi
N and 𝜋i both depend on Xi

N . Since the variance of yi
N and

the sampling probability both grow with Xi
N , one might expect optimism to be negative. This turns out to

be the case (see Table 2).

Scenario XN yN 𝜋

1 Xi
N

iid∼ N(0, 1) yi
N

ind∼ N(Xi
N , 1) 𝜋i ∝ log(i)

2 Xi
N

iid∼ N(0, 1) yi
N

ind∼ N(Xi
N , |Xi

N|) 𝜋i ∝ log(i)

Xi
N

iid∼ N(0, 1) yi
N

ind∼ BernΦ(Xi
N) 𝜋i ∝ log(i)

3 Xi
N

iid∼ N(0, 1) yi
N

ind∼ N(Xi
N , log(i)) 𝜋i ∝ log(i)

4a Xi
N

iid∼ N(0, 1) yi
N

ind∼ N(Xi
N , |Xi

N|) 𝜋i ∝ |Xi
N|

Xi
N

iid∼ N(0, 1) yi
N

ind∼ BernΦ(Xi
N) 𝜋i ∝ |Xi

N|
4b Xi

N
iid∼ N(0, 1) yi

N
ind∼ N(Xi

N , |Xi
N|) 𝜋i ∝ |Xi

N|−1

Xi
N

iid∼ N(0, 1) yi
N

ind∼ BernΦ(Xi
N) 𝜋i ∝ |Xi

N|−1

4. SIMULATION STUDIES

4.1. Consistency of the HTE Estimator
In this section we illustrate the properties of the HTE estimator via Monte Carlo simulation under
four potential non-uniform sampling designs and consider performance under a linear regression
and logistic regression model fit. The simulated experiments encompass four simplified scenarios
in which the relationship between model covariates, sampling probabilities, and model noise are
allowed to differ. In most scenarios, the HTE estimator is shown to provide a useful estimate for
the generalization error. We also show that the HTE estimator fails when sampling probabilities
and model errors are strongly correlated.

In all four scenarios, the finite population is first generated and then sub-sampled. The exact
distributions of the data are given in Table 1. In Scenario 1, the non-uniform sampling mechanism
is independent of Xi

N and yi
N . For Scenario 2, both the mean and variance are functions of the

predictor, but data generation is independent of the sampling mechanism. In Scenario 3, the
model errors and the sampling probabilities are a function of the same random variable zi; in
simulations zi was degenerate at the logarithm of index i. In Scenario 4, the model errors and the
sampling probabilities are both dependent on the absolute value of Xi

N .
For each scenario, 10,000 simulations are run. Within each simulation, a finite population of

size N = 100,000 is generated from which a sample of size n = 1, 000 is obtained. Then, weighted
least squares regression or weighted logistic regression (using inverse probabilities as weights)
is performed. In-sample error, extra-sample error and the HTE estimator are recorded. Thus, the
simulations provide a 10,000 large empirical sample of the difference between extra-sample and
in-sample errors and the HTE estimator. Results are shown in Table 2.

In the first column of Table 2, the mean, median, and 0.025 and 0.975 quantiles of the
simulated true optimism are presented. Note that in each scenario the optimism varies greatly
between each of the 10,000 simulation iterations. The variance of the HTE estimates is much
smaller in comparison, and, in most cases, their means and medians are extremely close to the
means and medians of the empirical optimisms. The HTE estimator is not directly consistent
for the population optimism but is consistent for the superpopulation optimism. We therefore
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TABLE 2: Population optimism versus HTE estimates. For both the finite population based optimism
“Err-err” and the HTE estimated optimism Ω̂, means, medians and empirical intervals based on 10,000

independent simulations are shown. Based on their mutual consistency for the superpopulation optimism,
one expects the empirical means of the finite population optimisms to be close to the HTE estimates.

Similar to other prediction error estimation methods, the HTE conditions on the observed support of X,
and is inaccurate for Scenario 4b (see text).

Err-err Ω̂

Scenario Mean {median} 95% interval Mean {median} 95% interval

Gaussian 1 0.004 {0.004} (−0.087, 0.091) 0.004 {0.004} ( 0.003, 0.005)

2 0.002 {0.007} (−0.192, 0.168) 0.004 {0.004} (−0.019, 0.026)

3 0.392 {0.524} (−9.792, 10.114) 0.451 {0.449} ( 0.360, 0.555)

4a 0.023 {0.068} (−0.674, 0.446) 0.009 {0.008} (−0.004, 0.024)

4b −0.007 {-0.008} (−0.164, 0.156) 0.052 {0.036} ( 0.014, 0.189)

Bernoulli 2 0.001 {0.001} (−0.027, 0.028) 0.001 {0.001} ( 0.000, 0.001)

4a 0.015 {0.015} (−0.041, 0.065) 0.010 {0.007} ( 0.002, 0.038)

4b −0.001 {-0.001} (−0.050, 0.044) 0.000 {0.000} (−0.000, 0.001)

expect that the means and medians of Table 2 should become arbitrarily close as the number of
simulation iterations gets large.

Here we address the performance of the HTE estimator for Scenario 4. It is important to
note that, in covariance penalty inflated prediction error estimation, the estimate is not just
based on the observed data, but explicitly for the error rate of future observations over the
exact same support as the observed data. For the covariance penalty inflated prediction error
methodology, it is easy to forget that the accuracy of the error estimate deteriorates as the
distance (given by some metric on the data space) between observations and future observations
grows. This is another way of saying that error is a function of—among other things—the
amount by which we use our error estimate inappropriately, that is, as an estimate of something
it is not an explicit estimator of. This fact explains why sampling probabilities that are strongly
correlated with model errors would cause ostensibly inaccurate results (as in Table 2). Strong
correlations between the sampling mechanism and model errors are problematic for the proposed
methodology (and for dAIC) insofar as we choose to use it to generalize to future observations
with drastically different support from that of the data observed. Despite these facts, the estimator
performs adequately in Scenario 4a. However, Scenario 4b is simulated with unusually perverse
dependencies between sampling probabilities and model errors, enforcing a negative optimism
that “breaks” our methodology.

4.2. Performance of the HTE Estimator Over AIC
Here we demonstrate the proposed HTE estimator’s properties as a function of sample size
and design efficiency in comparison to naive approaches that assume uniform sampling. We
simulate a situation in which high risk individuals are oversampled. For binary outcome, this
corresponds to a case–control study. We compare the estimation error of the prediction error
estimator to that of AIC for: (1) different sample sizes (50 through 10,000) keeping population
prevalence of high risk individuals (1 in 200) and ratio (20%) of high risk to normal individuals
fixed; and (2) different population prevalence of high risk individuals (1 in 1,000 to 1 in

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



214 HOLBROOK, LUMLEY AND GILLEN Vol. 48, No. 2

1

2

3

4

0 2500 5000 7500 10000
Sample size

R
el

at
iv

e 
es

tim
at

io
n 

er
ro

r 
(N

ai
ve

/H
T

E
)

1

2

3

4

0.00 0.05 0.10 0.15 0.20
Pop. prevalence of high risk individuals

Model Binomial Gaussian Poisson

FIGURE 1: Relative performance of HTE to “naive” AIC. For both plots, vertical axis is ratio
between prediction error estimators estimation error for true prediction error. Each setting is
simulated independently 100 times and means are communicated. Right plot varies population
prevalence of high risk individuals keeping sampling proportions constant. HTE is particularly

beneficial for small samples and efficient designs.

10) keeping sample size (1,000) and ratio (again, 20%) of high risk to normal individuals
fixed.

For each setting, real, count and binary data are simulated from Gaussian, Poisson and
Bernoulli distributions, respectively, using the same systematic component with respective
canonical links. For the Gaussian and Poisson scenarios, “cases” are marked using a dummy
variable indicating the top .005-quantile of the observed linear predictor values. Linear, logistic,
and log-linear models are used for prediction. True prediction error is obtained by applying the
prediction rules to the rest of the finite population. Each setting is simulated independently 100
times, and means are communicated.

Figure 1 exhibits the results in terms of the ratio of estimated prediction errors to the true
prediction error. This ratio is labelled the “relative estimation error.” In both plots, the ratio in
accuracies is most pronounced for the binary data case and more pronounced for the Gaussian
data case than the count data case. For small samples, HTE outperforms AIC. As sample sizes
grow, the difference between in-sample prediction error and extra-sample prediction error grows
small, so the estimators converge. When prevalence of high risk individuals in the population is
small, the study design is more efficient and the HTE outperforms AIC.

5. PREDICTION OF RENAL FUNCTION USING DATA FROM THE NATIONAL
HEALTH AND NUTRITION EXAMINATION SURVEY

We consider data from the Third National Health and Nutrition Examination Survey (NHANES
III) with the illustrative goal of constructing a model for predicting abnormal renal function as
proxied by an estimated glomerular filtration rate (GFR) of less than 60 mL/min per 1.73 m2.
Briefly, NHANES III was one of several periodic surveys conducted by the National Center for
Health Statistics (NCHS). The survey was conducted during 1988–1994, and was designed to
provide national estimates of health and nutritional status in the civilian non-institutionalized
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TABLE 3: Comparing dAIC and HTE for prediction of GFR (<60) with different covariates included.
Results come from a logistic regression model using deviance loss. For each method, p̂ is the estimated
effective number of parameters. The HTE term p̂ = n Ω̂∕2 is calculated using parametric bootstrap and

presented as median from 100 simulations and 95% empirical interval. Penalties increase with the number
of covariates but are too small to influence generalization error estimates because of the large sample size.

Importantly, dAIC and HTE give similar results and have penalties that are larger than the usual AIC
penalty.

Model Weighted deviance p dAIC p̂ HTE p̂

Age 9017.07 2 3.652 3.442 (2.550, 4.470)

+ BMI 8929.49 3 5.472 5.180 (3.998, 6.463)

+ Gender 8748.63 4 7.163 6.385 (5.339, 7.870)

+ Race/ethnicity 8695.96 5 7.121 7.158 (6.036, 8.782)

United States population aged 2 months and older. Children ages 2 months to 5 years, persons
60 years and older, Mexican-American persons and non-Hispanic black persons were sampled
at rates substantially higher than their proportions in the general population National Center For
Health Statistics (1996). To estimate renal function, we use the Modification of Diet in Renal
Disease () equation for GFR based on serum levels and demographic covariates Levy et al.
(1999). Specifically, GFR was estimated as

GFRMDRD = 170 × SCr−0.999 × ageyrs−0.176 × BUN−0.170×

Salb0.318 × 1.180black × 0.762female,

where SCr denotes serum creatinine, BUN denotes blood urea nitrogen, Salb denotes serum
albumin, and black and female denote indicators of non-Hispanic black race and sex, respectively.
Coresh et al. (2002) have previously reported that the assay used for measuring serum creatinine
in the NHANES study resulted in creatinine levels systematically higher than those used to
obtain the prediction model. As a consequence, they suggest creatinine values from NHANES
III be recalibrated to account for an average overestimate of 0.23 mg/dL. All analyses presented
here have performed the recommended recalibration.

Grade 3 chronic kidney disease (CKD) is defined as a GFR less than 60 mL/min per 1.73 m2

and is associated with increased morbidity and risk of end stage renal disease. As such we
consider building a model for predicting grade 3 CKD. To illustrate the generalizability of the
proposed HTE estimator, we approach this binary prediction task from two separate vantage
points and using two different loss functions. First, we use logistic regression to demonstrate the
empirical equivalence between dAIC and the HTE approach; here, deviance loss is used. Second,
we compare a number of prediction models with respect to in-sample and estimated extra-sample
errors; here, 0-1 loss is used. Using the NHANES data, we first demonstrate that dAIC and HTE
give similar results for a binary prediction task with deviance loss. Second, using 0-1 loss, we
calculate the in-sample error and HTE estimator for the kNN method (for which dAIC is not
available) and show how the HTE estimate might influence prediction model preference. Data
and code for all empirical studies has been included in the Supplementary Material.

5.1. dAIC and the HTE
Deviance loss is used for the dAIC/HTE comparison, so �̂�i is given by the log-odds. Table 3
shows the results from the dAIC/HTE comparison based on a logistic regression model with
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different covariate combinations. p∕n, the number of covariates divided by sample size, is used
as a reference that accords with a scaled traditional AIC, where the scaling is to meant for easy
comparison to prediction error. dAIC is similarly scaled. In general, all optimism estimates grow
with the model size, but all generalization error estimates get smaller with model size. Indeed,
the optimism estimates are kept small by the large size of the data sample. We note that dAIC
and HTE are close.

Estimating the covariance penalty
The covariance between the linear predictor �̂�i and the outcome yi is rarely known outside
of a few basic examples and approximations. As a result, Efron (1986) suggested the use of
the parametric bootstrap to produce empirical covariances between simulated outcomes and
their resulting fitted values. In this comparison, we use a stratified quasi-binomial GLM, where
“quasi” denotes a shared intra-primary sampling unit (PSU) dispersion parameter 𝜙 satisfying:

var(yi) = pi(1 − pi)𝜙 and 𝜙 = (1 + (n𝑗 − 1)𝜌),

for n𝑗 the size of PSU 𝑗 and 𝜌 the within-PSU correlation shared across all PSUs. If �̂� differs
from zero, then �̂� should be multiplied by the naive parametric bootstrap estimated covariance

B∑
b=1

�̂�∗b
i (y∗b

i − y∗⋅i ),

making the correct estimate

ĉovi = �̂�

B∑
b=1

�̂�∗b
i (y∗b

i − y∗⋅i ).

That said, this point is moot in a number of ways. First, when using a GLM (as is the case in
this example), it is less computationally intensive to use dAIC, the fully analytic special case
of the HTE. Second, in a study such as NHANES with PSUs on the order of 600, within-PSU
correlations tend to be small (in this article, |�̂�| < 5 × 10−4. Third, survey structure is often
approximated for end-users. Fourth, if the purpose is model comparison, multiplying by scalar
effects each fit equally. Nonetheless, Table 3 presents dAIC (using sandwich estimator) and HTE
(using parametric bootstrap) side-by-side for to show that results are similar as is to be expected.

5.2. k-Nearest Neighbours
We also compare the in-sample error and HTE estimated errors for kNN models with different
values of k. Here we adopt 0-1 loss, so �̂�i is given by −1 for pi < .5 and 1 for pi ≥ .5 (Efron,
2004). Results are shown in Table 4. In general, the larger k is, the smoother the decision rule.
In terms of the bias-variance trade-off, this amounts to more bias and less variance. Indeed,
as k increases from 10 to 40, in-sample prediction error increases, but the covariance-inflation
decreases. The HTE estimator appears to achieve an optimum somewhere around k = 30.

6. DISCUSSION

Motivated by the increasing importance of algorithmic prediction methodologies and the need
to effectively make predictions in the public health and medical sectors, we present a prediction
error estimation methodology with the hope that it will provide for the rigorous comparison of
competing prediction rules obtained from complex survey data. We show that our HTE estimator
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TABLE 4: Estimated error for kNN classification. Again, GFR (<60) is being predicted, but errors are
based on 0-1 loss. As the number of voting neighbours increases, in-sample error increases, and the HTE

optimism estimate Ω̂ (double the covariance penalty) decreases. Generalization error appears to hit its
lowest point at around 30-NN.

Predictive model err Ω̂∕2 ̂Err

10-NN 0.108 0.008 0.125

20-NN 0.113 0.004 0.121

30-NN 0.114 0.003 0.120

40-NN 0.116 0.002 0.121

is accurate and somewhat robust for GLMs and algorithmic prediction methods. Moreover,
we prove that the HTE generalizes dAIC (an AIC variant for complex samples) in the exact
same way that Efron’s covariance penalty inflated estimator generalizes AIC. We empirically
demonstrate this fact via simulation and also by considering the prediction of chronic kidney
disease using data from NHANES III, a large public health survey with prescribed sampling
weights.

There is a trend in medicine towards increasingly personalized treatment. Such treatment
is essentially a prediction task and, as such, is subject to the bias-variance trade-off. To help
avoid over-fitting when training the necessary predictive models, it will be necessary to use large
swaths of public health data, the majority of which arises from complex sampling procedures.
We therefore expect that our proposed methodology and its extensions will become increasingly
important for model scoring in the context of personalized medicine. Causal inference from
observational data is in some ways the opposite challenge of personalized medicine, although
the two are closely tied together. Moreover, methods in observational causal inference often
make use of the Horvitz–Thompson reweighting procedure. We are particularly interested in the
question of whether the proposed HTE estimator may be extended using reweighting procedures
commonly used in causal inference and whether this methodology might be useful for effective
personalized medicine.

We know of two immediate extensions to the methodology proposed here. Whereas the HTE
estimator is based on the closed-form model optimism, algorithmic and non-analytic prediction
error estimators are more common in the machine learning literature. We therefore anticipate
the extension of both cross-validation and bootstrap prediction error estimation to the complex
sample domain.

APPENDIX

Design-Based AIC

Lumley & Scott (2015) proposed an extension to AIC under a non-uniform sampling regime
by adopting the above superpopulation framework. We do not know the true distribution g, and
we seek to minimize the KL divergence between a plausible conditional distribution 𝑓𝜃(y|x)
and g(y) for observed covariate vector x. As in the uniform sampling case, this corresponds to
maximizing the log-likelihood 𝓁(𝜃) of the assumed model. For complex samples, this may be
estimated using Horvitz–Thompson (Horvitz & Thompson, 1952) weights:

𝓁(𝜃) = 1
N

n∑
i=1

wi 𝓁i(𝜃),
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where n is the size of s, N is the size of the finite population, wi ∝ 1∕𝜋i and
∑n

i=1 wi = N. In
general, the weights need not be the true sampling weights and may be adjusted to account
for non-response or calibrated towards population totals. Weight estimation methodologies are
well understood. Important examples in the biostatistics literature include Robins, Rotnitzky
& Zhao (1994) and Seaman & White (2013). Examples from the survey sampling literature
include Valliant (1993) and Deville & Särndal (1992) and Lumley, Shaw & Dai (2011) consider
connections between the areas.

Now, suppose that 𝜃∗ and �̂� are obtained by solving the score equation and pseudo-score
equation, respectively:

U(𝜃) = 𝜕𝓁(𝜃)
𝜕𝜃

= 0 , and Û(𝜃) = 𝜕𝓁(𝜃)
𝜕𝜃

= 0.

In the context of AIC, we are interested in estimating Eg(𝓁(�̂�)), the expected value of the
log-likelihood log 𝑓𝜃(y|x) evaluated at �̂� with respect to the true superpopulation distribution g.
Then it is shown in Lumley & Scott (2015) that

Eg
(
𝓁(�̂�)

)
= Eg

(
𝓁(�̂�)

)
+ 1

n
tr(Δ) + op(n−1), (A1)

where Δ = I(𝜃∗)V(𝜃∗), V(𝜃∗) is the asymptotic covariance of
√

n�̂�, and

(𝜃) = E𝜋,g
(
̂ (𝜃)

)
= −Eg

(𝜕2𝓁(𝜃)
𝜕𝜃𝜕𝜃T

)
,

for

̂ (𝜃) = − 1
N

n∑
i=1

wi
𝜕2𝓁i(𝜃)
𝜕𝜃𝜕𝜃T

.

Note that  is just the Fisher information corresponding to distribution g and that ̂ (�̂�) reduces to
the observed Fisher information when the sample is collected uniformly. Equation (A1) results
in a design-based formulation of AIC for complex data, dAIC:

dAIC = −2𝓁(�̂�) + 2 tr
{
̂ (�̂�)V̂(�̂�)

}
,

where V̂(�̂�) is the sandwich estimator for V(𝜃∗):

V̂(�̂�) = ̂ (�̂�)−1V̂U(�̂�)̂ (�̂�)−1 (A2)

for V̂U(�̂�) a consistent estimator of cov
(√

nÛ(𝜃)
)
. Thus dAIC may be rewritten as

dAIC = −2𝓁(�̂�) + 2 tr
{
̂ (�̂�)−1V̂U(�̂�)

}
.

When the weights are uniform, dAIC reduces to a robust version of AIC called Takeuchi’s
information criterion Takeuchi (1976). If, in addition, the model is correctly specified, dAIC
reduces to AIC Lumley & Scott (2015).

The meat of the sandwich. The sandwich estimator for V(𝜃∗) is provided in Equation (A2).
The meat of this sandwich is the estimated asymptotic covariance V̂U(�̂�) of the score function
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Û(�̂�). In its most general form, we have

V̂U(�̂�) = Û(�̂�)Û(�̂�)T .

Among other things, the example of “Example: linear regression model based on weighted
independent sample” section shows that for linear regression in the non-uniform, unstratified
sampling case, V̂U(�̂�) takes the form

XTΠ−1Σ̂O Π−1X
(N�̂�2)2

,

where Σ̂O is the diagonal matrix of pointwise residuals. In general, for exponential family GLMs
for non-uniform, unstratified samples, we have

V̂U(�̂�) =
1

N2
XTΠ−1Σ̂O Π−1X,

for Σ̂O the diagonal matrix of observed residuals. The NHANES data considered in Section 5
is obtained from a stratified sample with intra-stratum and inter-PSU correlations as well as
intra-PSU correlations. In such a sample with strata h = 1,… ,H, V̂U(�̂�) takes the form

V̂U(�̂�) =
1

N2
XTΠ−1bdiag

(
Σ̂1

O,… , Σ̂H
O

)
Π−1X,

assuming observations are ordered according to stratum membership. Here, bdiag indicates a
block-diagonal structure, and Σ̂h

O itself has a block structure corresponding to individual PSUs:

Σ̂h
O =

⎛⎜⎜⎝
Σ̂h

1 Σ̂h
12 …

⋮ ⋱
Σ̂h

1nh
Σ̂h

nh

⎞⎟⎟⎠ .

In this formula, blocks along the diagonal are given by

Σ̂h
𝑗
= (Yh

𝑗
− �̂�h

𝑗
)(Yh

𝑗
− �̂�h

𝑗
)T =

∑
i,i′∈𝑗

(yh
i − �̂�

h
i )(y

h
i′ − �̂�

h
i′ ),

where i, i′ denote individuals and 𝑗 denotes the PSU. Off-diagonal blocks take the form

Σ̂h
𝑗𝑗′ = (Yh

𝑗
− ̂̄𝜇h

𝑗
)(Yh

𝑗′ − ̂̄𝜇h
𝑗′ )

T =
∑

i∈𝑗, i′∈𝑗′
(yh

i − ̂̄𝜇h
𝑗
)(yh

i′ − ̂̄𝜇h
𝑗′ ),

where ̂̄𝜇h
𝑗

is the average predicted value for PSU 𝑗, and ̂̄𝜇h
𝑗

is this average multiplied by an
n𝑗-vector of ones. The upshot is that in the above (the proof of Theorem 3.1, in particular), we
can ignore the particular sampling structure and simply write

V̂U(�̂�) =
1

N2
XTΠ−1Σ̂OΠ−1X,

letting Σ̂O take whichever form appropriate for whichever sampling structure.
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