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ABSTRACT
Wepresent geodesic LagrangianMonteCarlo, an extension ofHamil-
tonianMonte Carlo for sampling fromposterior distributions defined
on general Riemannian manifolds. We apply this new algorithm to
Bayesian inference on symmetric or Hermitian positive definite (PD)
matrices. To do so, we exploit the Riemannian structure induced
by Cartan’s canonical metric. The geodesics that correspond to this
metric are available in closed-form and – within the context of
Lagrangian Monte Carlo – provide a principled way to travel around
the space of PD matrices. Our method improves Bayesian inference
on such matrices by allowing for a broad range of priors, so we are
not limited to conjugate priors only. In the context of spectral den-
sity estimation, we use the (non-conjugate) complex reference prior
as an example modelling option made available by the algorithm.
Results based on simulated and real-world multivariate time series
are presented in this context, and future directions are outlined.
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1. Introduction

In this paper, we introduce geodesic Lagrangian Monte Carlo (gLMC), a methodology for
Bayesian inference on a broad class of Riemannian manifolds. We illustrate this general
methodology using the space of positive definite (PD) matrices as a concrete example.
The resulting algorithms allow for direct inference on the space of PD matrices and are
thus the first of their kind. As a result, gLMC facilitates better prior elicitation of covari-
ance matrices by negating the need for conjugate priors and avoiding difficult-to-interpret
transformations on variables of interest.

In statistics, PD matrices primarily appear as covariance matrices parameterizing the
multivariate Gaussian model. This model is the workhorse of modern statistics and
machine learning: linear regression, probabilistic principal components analysis, Gaussian
Markov randomfields, spectral density estimation, andGaussian processmodels all rely on
the multivariate Gaussian distribution. The d-dimensional Gaussian distribution is com-
pletely specified by a mean vector μ and a covariance matrix � in S+d , the space of d-by-d

CONTACT Andrew Holbrook aholbroo@uci.edu

© 2017 Informa UK Limited, trading as Taylor & Francis Group

D
ow

nl
oa

de
d 

by
 [

10
8.

18
5.

15
5.

18
1]

 a
t 2

1:
27

 2
7 

D
ec

em
be

r 
20

17
 

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2017.1416470&domain=pdf
http://orcid.org/0000-0002-3558-200X
http://orcid.org/0000-0002-9167-3715 
mailto:aholbroo@uci.edu


2 A. HOLBROOK ET AL.

PD matrices. By imposing different structures on the covariance matrix, one can create
different models. In some cases, it is possible to parameterize the covariance matrices in
terms of a small number of parameters. However, learning of the unstructured covariance
matrices, usually involved in inference on a large number of parameters, has remained as
an issue. The conjugate Gaussian inverse-Wishart model has known deficiencies [1]. Out-
side of non-linear parameterizations of the Cholesky decomposition or matrix logarithm,
there has not yet been a way to perform Bayesian inference directly on the space of PD
matrices with flexible prior specifications using unstructured covariance matrices.

In this most general context the difficulty is in sampling from a posterior distribution
on an abstract, high-dimensional manifold with boundary. It has not been clear how to
propose moves from point to point within (and without leaving) this space. Our method
takes advantage of the intrinsic, Riemannian geometry on the space of PD matrices. This
space is incomplete under the Euclidean metric: following a straight trajectory will often
result inmatrices that are no longer PD. The space is, however, geodesically complete under
the canonical metric: no matter how far the sampler travels along any geodesic, it never
leaves the space of PDmatrices. Intuitively, we redefine ‘straight line’ in away that precludes
leaving the set of interest. Moreover, the metric-induced geodesics provide a natural way
to traverse the space of PD matrices, and these geodesics fit nicely with recent advances in
Hamiltonian Monte Carlo (HMC) on manifolds [2–4].

To this end, we usegLMC, which belongs to a growing class of HMC algorithms. HMC
provides an intelligent, partially deterministic method for moving around the parameter
space while leaving the target distribution invariant. New Markov states are generated by
numerically integrating a Hamiltonian system while Metropolis-Hastings steps account
for the numerical error [5]. Riemannian manifold Hamiltonian Monte Carlo (RMHMC)
adapts the proposal path by incorporating second-order information in the form of a Rie-
mannianmetric tensor [2]. LagrangianMonte Carlo (LMC) builds on RMHMC by using a
random velocity in place of RMHMC’s randommomentum. LMC’s explicit integrator is no
longer volume preserving; it therefore requires Jacobian corrections for each accept-reject
step [6]. The embedding geodesic Monte Carlo (egMC) [3] is able to take the geometry
of the parameter space into account while avoiding implicit integration by splitting the
Hamiltonian [7] into a Euclidean and a geodesic component. Unfortunately, egMC is not
applicable when a manifold’s Riemannian embedding is unknown. gLMC, on the other
hand, efficiently uses the same split Hamiltonian formulation as egMCbut does not require
an explicit Riemannian embedding (see [4], for example). This last fact makes gLMC an
ideal candidate for Bayesian inference on the space of PD matrices.

gLMC allows us to treat the entire covariancematrix as one would treat any othermodel
parameters. We are no longer restricted to use a conjugate prior distribution or to specify
a low-rank structure. We illustrate applications of gLMC for PD matrices using both sim-
ulated and real-world data. First, we show that gLMC provides the same empirical results
as the closed-form solution for the conjugate Gaussian inverse-Wishart model. After this,
we focus on applying gLMC for Hermitian PD matrices to multivariate spectral density
estimation and compare the results obtained from two different prior specifications: the
inverse-Wishart prior and the complex reference prior. Then, we obtain credible intervals
for the squared coherences (see Section 2) of simulated vector auto-regressive time series
for which the spectral densitymatrix is known. Finally, we apply gLMC to learn the spectral
density matrix associated with multivariate local field potentials (LFPs).
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 3

The contributions of this paper are as follows:

• gLMC, an MCMC methodology for Bayesian inference on general Riemannian mani-
folds, is proposed;

• to illustrate the general methodology, we provide a detailed description of gLMC on the
spaces of symmetric and Hermitian PD matrices;

• for classical statisticians, the paper serves as a brief introduction to spectral density
estimation and its Bayesian approach;

• the proposed algorithms are applied to Bayesian inference on (real and complex) covari-
ance matrices based on simulated and real-world data and using a number of different
prior specifications.

It should be noted that the proposed method is useful for generating samples from the
posterior distribution of interest and not just a point estimate. The proposed method is
for full inference of a posterior distribution defined directly over the space of PD matrices
without limiting ourselves to conjugate priors, as such, is the first of its kind.

That said, it is sometimes sufficient for the scientist to obtain a point estimate of the
covariance or spectral densitymatrix. In this context, regularization of the estimate is often
advantageous. Regularization approaches may be interpreted as Bayesian and their corre-
sponding point estimates are interpreted as maximum a posteriori (MAP) estimates. See
[8] for a statistically minded survey of covariance estimation and regularization, and see
[9] for a state-of-science approach to point estimation in signal processing applications.

The rest of the paper is outlined thus: in Section 2, we provide motivation for our
approach in the form of a brief introduction to spectral density estimation for multi-
variate time series; in Section 3, we define PD matrices and show how the space of PD
(symmetric or Hermitian) matrices comprises a Riemannian manifold; in Section 4, we
present the gLMCmethodology for Bayesian inference on general Riemannian manifolds;
in Section refpdhmc, we detail gLMCon the spaces of symmetric andHermitian PDmatri-
ces; in Section 6, we introduce the reader to common proper and improper priors for
covariance matrices; in Section 7, we present empirical results based on simulated and
real-world data.

2. Motivation: learning the spectral density matrix

Given a stationary multivariate time series y(t) = (y1(t), . . . , yd(t))T ∈ Rd, t = 1, . . . ,T,
one often wants to characterize the dependencies between vector elements through time.
There are multiple ways to define such dependencies, and these definitions feature either
the time series directly or the Fourier-transformed series in the frequency domain. In
the time domain, one characterization of dependence is provided by the lagged vari-
ance–covariance matrix ��. In terms of lag �, this is written

�� = Cov
(
y(t), y(t − �)

) = E
((
y(t)− μ

) (
y(t − �)− μ

)T) . (1)

Note that �� and μ are invariant over time by stationarity. If the scientist has a reason to
suspect that a certain lag � is importanta priori, then �� can be a useful measure. On the
other hand, it is often more scientifically tractable to think in terms of frequencies rather
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4 A. HOLBROOK ET AL.

than lags. In neuroscience, for example, onemight hypothesize that two brain regions have
‘correlated’ activity during the performance of a specific task, but this co-activitymay be too
complex to describe in terms of a simple lagged relationship. The spectral density approach
lends itself naturally to this kind of question. For a full discussion, see [10].

The power spectral density matrix is the Fourier transform of ��:

�(ω) =
∞∑

�=−∞
�� exp(−i2πω�). (2)

�(ω) is a Hermitian PDmatrix. A HermitianmatrixM is a complex valuedmatrix satisfy-
ingMH = M̄T = M, where (·) denotes taking the complex conjugate. A Hermitian matrix
M is defined to be PD if zHMz > 0, ∀z ∈ Cd \ {0}.

A diagonal element �ii(ω) is called the auto-spectrum of yi(t) at frequency ω, and an
off-diagonal element �ij(ω), i �= j is the cross-spectrum of yi(t) and yj(t) at frequency ω.
The squared coherence is given by

ρ2
ij(ω) = |�ij(ω)|2

�ii(ω)�jj(ω)
, (3)

where | · | denotes the complex modulus. There are a number of ways to estimate the spec-
tral density matrix and, hence, the matrix of squared coherences. In this paper, we use the
Whittle likelihood approximation [11]. We model the discrete Fourier transformed time
series Y(ωk) ∈ Cd as following a (circularly-symmetric) complex multivariate Gaussian
distribution:

Y(ωk)
ind∼ CNd(0,�(ωk)), (4)

where, for ωk = k/T and k = −(T/2− 1), . . . ,T/2,

Y(ωk) = 1√
T

T∑
t=1

y(t) exp(−i2πωkt). (5)

Three assumptions are made here. First, we assume that the Y(ωk)s are exactly Gaussian:
this is true when the y(t) follow any Gaussian process. Moreover, if y(t) follow a linear
process, then the Y(ωk) are asymptotically Gaussian as T goes to infinity [12]. Second, we
assume that for ωk �= ωk′ , Y(ωk) and Y(ωk′) are independent, whereas [12] show that they
are asymptotically uncorrelated. Third, we assume that �(·) is approximately piecewise
constant across frequency bands, and take all Y(ωk) to be approximately i.i.d. within a
small enough frequency band. For example, if we are interested in the alpha band of neural
oscillations ranging from 7.5 to 12.5Hz, then we model

Y(ωk)
iid∼ CNd(0,�α), (6)

where�α denotes the spectral density matrix shared by the entire band. For a recent use of
the approximately piecewise constant assumption, see [13], where the spectrum is rep-
resented as a sum of unique AR(2) spectra, with each of the AR(2) capturing distinct
frequency bands.
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 5

Thus, having obtained samples Y(ω) from a fixed frequency band, we will use gLMC
over Hermitian PDmatrices to perform inference on �. The posterior samples of � auto-
matically provide samples for the distributions of the squared coherences, which can in
turn elucidate dependencies between the univariate time series. Before discussing gLMC
for PD matrices, we establish necessary facts regarding the space of PD matrices.

3. The space of PDmatrices

Let Sd(C) denote the space of d× d Hermitian matrices, and S+d (C) denote its subspace
of PD matrices.1 The space of Hermitian PD matrices, S+d (C), may be written as a quo-
tient space GL(d,C)/U(d) of the complex general linear group GL(d,C) and the unitary
group U(d). The general linear group is the smooth manifold for which every point is a
matrix with non-zero determinant. The unitary group is the space of all complex matri-
cesU satisfyingUHU = UUH = I. This quotient space representation is rooted in the fact
that every PD matrix may be written as the product � = GGH = GUUHGH for a unique
G ∈ GL(d,C) and any arbitrary unitary matrix U ∈ U(d). For the convenience of expo-
sition, we drop the dependence on C of symbols in the following of this section. Related
references are [14–16].S+d is a homogeneous spacewith respect to the general linear group:
this means that the group acts transitively on the S+d . Here the group action is given by
conjugation:

G∗� = G�GH . (7)

For any�1,�2 ∈ S+d , it simply takes the composition�
1/2∗
2 ◦�

−1/2∗
1 to transform�1 into

�2:

�
1/2∗
2 ◦�

−1/2∗
1 �1 = �

1/2∗
2

(
�
−1/2
1 �1�

−1/2
1

)
= �

1/2
2 I�1/2

2 = �2. (8)

The space of Hermitian matrices, Sd, happens to be the tangent space to the space of
Hermitian PD matrices at the identity, denoted as TIdS+d , that is, TIdS+d = Sd. The action

�1/2∗ : V �→ �1/2V�1/2 (9)

translates vectorV ∈ TIdS+d to its corresponding vector in T�S+d , the tangent space to the
space of PD matrices at point �.

Élie Cartan constructed a natural Riemannian metric g(·, ·) on the tangent bundle TS+d
that is invariant under group action (7). For two vectors V1,V2 ∈ TIdS+d , the metric is
given by

gI(V1,V2) = tr(V1V2). (10)

In this way the space of PD matrices is isometric to Euclidean space (equipped with the
Frobenius norm) at the identity. Next define the metric at any arbitrary point � to be

g�(V1,V2) = tr(�−1V1�
−1V2). (11)

It is easy to check that gI(V1,V2) = g�(�1/2∗V1,�1/2∗V2) and so �1/2∗ is a Riemannian
isometry on S+d .

Two geometric quantities are required for our purposes: the Riemannian metric tensor
and its corresponding geodesic flow, specified by a starting point and an initial velocity vec-
tor. The computational details involving the metric tensor are presented in Section 5. Here
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6 A. HOLBROOK ET AL.

we present the closed form solution for the geodesic flow as found in [14]. S+d is an affine
symmetric space [17]. As such the geodesics under the invariantmetric are generated by the
one-parameter subgroups of the acting Lie group [14,16]. These one-parameter subgroups
are given by the group exponential map which, at the identity, is given by the matrix expo-
nential exp tG. In order to calculate the unique geodesic curve with starting position �(0)
and initial velocity V(0), all one needs is to translate the velocity to the identity, compute
the matrix exponential, and translate it back to the point of interest. In sum, the geodesic
is given by

�(t) = exp� tV(0) = �(0)1/2 exp
(
t�(0)−1/2V(0)�(0)−1/2

)
�(0)1/2. (12)

The corresponding flowon the tangent bundlewill also be useful. This is obtained by taking
the derivative with respect to t:

V(t) = �̇(t) = d
dt

exp� tV(0)

= V(0)�(0)−1/2 exp
(
t�(0)−1/2V(0)�(0)−1/2

)
�(0)1/2. (13)

For a Lie group, the exponential map (on which the above formula is based) is a local
diffeomorphism between the tangent space at a point on the manifold and the manifold
itself. Given a tangent vectorV at�, exp� V is a point on themanifold. Incidentally, for the
spaces of PD matrices, this diffeomorphism is global. The inverse of the exponential map
is the logarithmic map. Whereas the exponential map on the manifold takes Hermitian
matrices (Sd) to Hermitian PD matrices (S+d ), the logarithmic map takes Hermitian PD
matrices (S+d ) to Hermitian matrices (Sd).

Together these are most of the geometric quantities required for gLMC over PD matri-
ces. The next section presents HMC, its geometric extension RMHMC, and its Lagrangian
manifestations.

4. Bayesian inference using the geodesic LMC

Given data y1, . . . , yN ∈ Rn, one may specify a generative model by a likelihood function,
p(y | q). In the following we allow q ∈Mm to be an m-dimensional vector on a manifold
that parameterizes the likelihood. Endowing q with a prior distribution p(q) renders the
posterior distribution

π(q) = p(q | y) = p(y | q)p(q)∫
p(y | q)p(q) dq . (14)

The integral is often referred to as the evidence and may be interpreted as the probabil-
ity of observing data y given the model. In most interesting models the evidence integral
is intractable and high-dimensional models do not lend themselves to easy numerical
integration. Non-quadrature sampling techniques such as importance sampling or even
random walk MCMC also suffer in high dimensions. HMC is an effective sampling tool
for higher dimensional models over continuous parameter spaces [5,18]. Here we discuss
HMC and its geometric variants (see Section 1) in detail.

In HMC, a Hamiltonian system is constructed that consists of the parameter vector q
and an auxiliary vector p of the same dimension. The negative-log transform turns the
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 7

probability density functions into a potential energy functionU(q) = − logπ(q) and cor-
responding kinetic function K(p). Thus q and p become the position and momentum of
Hamiltonian function

H(q, p) = U(q)+ K(p). (15)

By Euler’s method or extensions, the system is numerically advanced according to Hamil-
ton’s equations:

dq
dt
= ∂H

∂p
,

dp
dt
= −∂H

∂q
. (16)

Riemannianmanifold HMC uses a slightly more complicated Hamiltonian to sample from
posterior π(q):

H(q, p) = − logπ(q)+ 1
2 log |G(q)| + 1

2p
TG(q)−1p. (17)

Here, G(q) is the Fisher information matrix at point q (in Euclidean space) and may be
interpreted as a Riemannian metric tensor induced by the curvature of the log-probability.
Exponentiating and negating H(q, p) reveals p to follow a Gaussian distribution centred
at origin with metric tensor G(q) for covariance. The corresponding system of first-order
differential equations is given by

dq
dt
= G(q)−1p,

dp
dt
= ∇q

(
logπ(q)− 1

2
log |G(q)| − 1

2
pTG(q)−1p

)
. (18)

The Hamiltonian is not separable in p and q. To get numerical solutions, one may split
it into a potential term H[1], featuring q alone, and a kinetic term, H[2], featuring both
variables [3,7]. The two systems are then simulated in turn. The first term is given by

H[1](q, p) = − logπ(q)+ 1
2 log |G(q)| (19)

and starting at (q(0), p(0)) the associated system has solutions

q(t) = q(0) and p(t) = p(0)+ t∇q(logπ(q)− 1
2 log |G(q)|)|q=q(0). (20)

The second component is the quadratic form

H[2](q, p) = 1
2p

TG(q)−1p. (21)

The solutions to the system associated with H[2] are given by the geodesic flow under the
Levi-Civita connection with respect to metric G and with momentum p(t) = G(q(t))q̇(t).
There is, however, no a priori reason to restrictG(q) to be the Fisher information as is done
in the [2]. In fact, by allowing G(q) to take on other forms, one may perform HMC on a
number of manifold parameterized models.
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8 A. HOLBROOK ET AL.

Algorithm 1 Geodesic Lagrangian Monte Carlo
Let q = q(k) be the kth state of the Markov chain. The next sample is generated according
to the following procedure.
(a) Generate proposal state q∗:
1: v ∼ N(0,G−1(q))
2: e←− logπ(q)− 1

2 log |G(q)| + 1
2v

TG(q)v
3: q∗ ← q
4: for τ = 1, . . . ,T do
5: v← v + ε

2G(q∗)−1∇q
(
logπ(q∗)+ 1

2 log |G(q∗)|)
6: Progress (q∗, v) along the geodesic flow for time ε.
7: v← v + ε

2G(q∗)−1∇q
(
logπ(q∗)+ 1

2 log |G(q∗)|)
8: end for
9: e∗ ← − logπ(q∗)− 1

2 log |G(q∗)| + 1
2v

TG(q∗)v
(b) Accept proposal with probability min{1, exp(e)/ exp(e∗)}:
1: u ∼ U(0, 1)
2: if u < exp(e− e∗) then
3: q← q∗
4: end if

(c) Assign value q to q(k+1), the (k+ 1)th state of the Markov chain.

4.1. Geodesic LagrangianMonte Carlo

Byrne and Girolami [3] show how to extend the RMHMC framework to manifolds that
admit a known Riemannian isometric embedding into Euclidean space. The algorithm
is especially efficient when there exists a closed form linear projection of vectors in the
ambient space onto the tangent space at any point. Although this embedding will always
exist [19], it is rarely known. When equipped with the canonical metric, the space of PD
matrices does not admit a known isometric embedding. Moreover, we are unaware of a
closed-form projection onto the manifold’s tangent space at a given point. We therefore
opt for an intrinsic approach instead.

In the prior section, we stated that the solution to Hamilton’s equations associated
with the kinetic term H[2] is given by the geodesic flow with respect to the Levi-Civita
connection. This flow is easily written in terms of the exponential map with respect to
a velocity vector (as opposed to the momentum covector). Given an arbitrary covector
p ∈ T∗qM, onemay obtain the corresponding vector v ∈ TqM by the one-to-one transfor-
mation v = G−1(q)p. Hence whereas RMHMC augments the systemwith p ∼ N(0,G(q)),
LagrangianMonte Carlo makes use of v = G−1(q)p ∼ N(0,G−1(q)). The energy function
is then given by

E(q, v) ∝ − logπ(q)− 1
2 log |G(q)| + 1

2v
TG(q)v. (22)

The probabilistic interpretation of the energy remains the same as in the case of RMHMC:
the energy is the negative logarithm of the probability density functions of two indepen-
dent random variables, one of which is the variable of interest, the other of which is the
augmenting Gaussian variable. On the other hand, the physical interpretation is different.
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 9

We use the term ‘energy’ in order to accommodate the two physical interpretations avail-
able for Equation (22):E(q, v)may be thought of either as aHamiltonian or as a Lagrangian
energy. In practice, which formulation is used is dictated by the geometric information
available. The Lagrangian formulation provides efficient update equations when no closed-
form geodesics are available. In this case, the Lagrangian (energy) is defined as the kinetic
term T less the potential term V as follows

V(q, v) = logπ(q)+ 1
2 log |G(q)|, and T(q, v) = 1

2v
TG(q)v. (23)

But when closed-form geodesics are available, it is useful to follow [3] and split the (now
considered) Hamiltonian into two terms as in Equations (19) and (21).Within this regime,
H[1] = −V and H[2] = T. In analogy with Equation (20) and starting at (q(0), v(0)), the
system defined by potential V has solution

q(t) = q(0), v(t) = v(0)+ tG(q)−1∇qV(q, v)|q=q(0), (24)

and the system defined by kinetic termT has the unique geodesic path specified by starting
position q(0) and initial velocity v(0) as a solution. The inverse metric tensor G−1(q) is
used to ‘raise the index’, that is, transform the covector ∇qV(q, v) into a vector on the
tangent space at q. Thus it plays a similar function to the orthogonal projection in [3].
We call this formulation geodesic Lagrangian Monte Carlo (gLMC) and detail its steps
in Algorithm 1, where the term ‘Lagrangian’ is used to emphasize the fact that we use
velocities in place of momenta. Note [4,20] implemented the similar idea on the manifold
of a d-dimensional sphere. To implement geodesic Lagrangian Monte Carlo, one must be
able to compute the inverse metric tensor G−1(q) and the geodesic path given starting
values. When the space of PD matrices is equipped with the canonical metric, G−1(q) is
given in closed-form and the geodesic path is easily computable.

5. gLMC on themanifold of PDmatrices

To perform gLMCon the space of PDmatrices,S+d , we equip themanifold with the canon-
icalmetric. In order to signify that we are no longer dealingwith gLMC in its full generality,
we adopt the notation of Section 3. PD matrix � replaces q, and symmetric or Hermitian
matrixV replaces v. All other notations remain the same. As stated in the previous section,
we require the inverse metric tensor G−1(�). To compute this quantity, we need a couple
more tools provided by Moakher and Zéraï [15]. Let vech(·) take symmetric (Hermitian)
d× d matrices to vectors of length (d/2)(d + 1) by stacking diagonal and subdiagonal
matrix elements in the following way:

vech(V) = (V11,V21, . . . ,Vd1,V22, . . . ,Vd2, . . . ,Vdd). (25)

Let vec(·) take symmetric (Hermitian) d× d matrices to vectors of length d2 by stacking
all matrix elements:

vec(V) = (V11,V21, . . . ,Vd1,V12, . . . ,Vd2, . . . ,V1d, . . . ,Vdd). (26)

Let Dd be the unique d2 × (d/2)(d + 1) matrix satisfying

vec(V) = Ddvech(V). (27)
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10 A. HOLBROOK ET AL.

Algorithm 2 gLMC for symmetric PD matrices
Let� = �(k) be the kth state of theMarkov chain. The next sample is generated according
to the following procedure.
(a) Generate proposal state �∗:
1: vech(V) ∼ N(0,G−1(�))

2: e←− logπ(�)− d+1
2 log |�| + 1

2vech(V)TG(�)vech(V)

3: �∗ ← �

4: for τ = 1, . . . ,T do
5: vech(V)← vech(V)+ ε

2G
−1(�∗)vech

(
∇�

(
logπ(�∗)+ d+1

2 log |�∗|
))

6: Progress (�∗,V) along the geodesic flow for time ε.
7: vech(V)← vech(V)+ ε

2G
−1(�∗)vech

(
∇�

(
logπ(�∗)+ d+1

2 log |�∗|
))

8: end for
9: e∗ ← − logπ(�∗)− d+1

2 log |�∗| + 1
2vech(V)TG(�∗)vech(V)

(b) Accept proposal with probability min{1, exp(e)/ exp(e∗)}:
1: u ∼ U(0, 1)
2: if u < exp(e− e∗) then
3: �← �∗
4: end if

(c) Assign value � to �(k+1), the (k+ 1)th state of the Markov chain.

Denote D+d as the Moore–Penrose inverse of Dd satisfying

vech(V) = D+d vec(V), (28)

with D+d given by

D+d = (DT
dDd)

−1DT
d . (29)

Then Moakher and Zéraï [15] show that the metric tensor and inverse metric tensor are
given by the (d/2)(d + 1)× (d/2)(d + 1) dimensional matrices

G(�) = DT
d (�−1 ⊗�−1)Dd and G−1(�) = D+d (� ⊗�)D+Td . (30)

Finally, the determinant of G(�) can be expressed in terms of � alone:

|G(�)| ∝ |�|d+1. (31)

The metric tensor features in the energy function for gLMC for both symmetric and
Hermitian PD matrices. For symmetric PD matrices, the energy is given by

E(�,V) ∝ − logπ(�)− 1
2
log |G(�)| + 1

2
vech(V)TG(�)vech(V)

∝ − logπ(�)− d + 1
2

log |�| + 1
2
vech(V)TG(�)vech(V), (32)

but the energy for Hermitian PD matrices is slightly different. In this case, both � and
V are complex valued, and vech(V) follows a multivariate complex Gaussian distribution
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 11

with covariance G−1(�). Therefore, the gLMC energy for Hermitian PDmatrices is given
by

E(�,V) ∝ − logπ(�)− log |G(�)| + vech(V)HG(�)vech(V)

∝ − logπ(�)− (d + 1) log |�| + vech(V)HG(�)vech(V), (33)

where (·)H signifies the conjugate transpose. Notice that the log-determinant and
quadradic terms are notmultiplied by the factor 1/2. This accords with the density function
of a complex Gaussian random variable. See Appendix for more details.

The metric tensor (30) and the geodesic equations (12) and (13) are the only geomet-
ric quantities required for gLMC on PD matrices. The kth iteration of the symmetric PD
algorithm is shown in Algorithm 2. The kth iteration of the Hermitian PD algorithm is
shown in Algorithm 3. First, one generates a Gaussian initial velocity on T�(k)S+d (Step 1).
Then, the energy function is evaluated and stored (Step 2). Next, the system is numerically
advanced using the split Hamiltonian scheme. Following Equation (24), the velocity vector
V is updated one half-step with the gradient of H[1] (Step 4). For Step 5, both � and V are
updated with respect toH[2], that is, they are transported along the geodesic flow given by
Equations (12) and (13):

[�(0),V(0)] �→ [�(ε),V(ε)] . (34)

Again, the velocity vector V is updated one half-step with the gradient of H[1] (Step 6).
Finally, the energy is evaluated at the new Markov state (Step 9), and a Metropolis accept-
reject step is implemented (Steps 10–12). It is important to note that, besides being over
different algebraic fields, the symmetric and Hermitian instantiations only differ in their
respective energies. The general implementation is the same. See Appendix for a short
discussion on gradients.

6. Some priors on covariancematrices

We provide a short introduction to some well known priors for covariance matrices. This
list is in no way exhaustive but is meant to hint at the choices available to practitioners. Of
the priors we present, three are improper (are not well defined probability distributions)
and two are proper. The real and complex versions of all five priors are shown in Table 1.

The Wishart and inverse-Wishart distributions are the most well known for PD matri-
ces. These two distributions are popular not because they are particularly good models

Table 1. Priors for � and their densities up to proportionality: the first two priors are proper, that is,
comprise well-defined probability distributions, the last three are not.

Prior Real Complex

Wishart |�|(n−d−1)/2 exp(−tr{�−1�}/2) |�|n−d exp(−tr{�−1�})
inverse-Wishart |�|−(n+d+1)/2 exp(−tr{��−1}/2) |�|−(n+d) exp(−tr{��−1})
uniform 1 1
Jeffreys |�|−(d+1)/2 |�|−d
reference (|�|∏i<j(di − dj))−1 (|�|∏i<j(di − dj)2)−1

Notes:� is symmetric and Hermitian PD in the left and right columns, respectively. Note how the Wishart, inverse-Wishart,
and Jeffreys priors share similar patterns moving from real to complex numbers.
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12 A. HOLBROOK ET AL.

Algorithm 3 gLMC for Hermitian PD matrices
Let� = �(k) be the kth state of theMarkov chain. The next sample is generated according
to the following procedure.
(a) Generate proposal state �∗:
1: vech(V) ∼ CN(0,G−1(�))

2: e←− logπ(�)− (d + 1) log |�| + vech(V)HG(�)vech(V)

3: �∗ ← �

4: for τ = 1, . . . ,T do
5: vech(V)← vech(V)+ ε

2G
−1(�∗)vech

(∇�

(
logπ(�∗)+ (d + 1) log |�∗|))

6: Progress (�∗,V) along the geodesic flow for time ε.
7: vech(V)← vech(V)+ ε

2G
−1(�∗)vech

(∇�

(
logπ(�∗)+ (d + 1) log |�∗|))

8: end for
9: e∗ ← − logπ(�∗)− (d + 1) log |�∗| + vech(V)HG(�∗)vech(V)

(b) Accept proposal with probability min{1, exp(e)/ exp(e∗)}:
1: u ∼ U(0, 1)
2: if u < exp(e− e∗) then
3: �← �∗
4: end if

(c) Assign value � to �(k+1), the (k+ 1)th state of the Markov chain.

but because they make Bayesian inference easy for covariance matrices. The Wishart and
inverse-Wishart distributions are conjugate priors for the precision and covariance matri-
ces, respectively. This means that they provide closed-form posteriors given the data and
thus obviate Monte Carlo methods. Of course, the Wishart distribution can be used as a
prior for covariances (as opposed to precision matrices), but it usually is not since conju-
gacy is then lost. The inverse-Wishart distribution is the distribution of the inverse of a
Wishart random variable. Shown in Table 1, both distributions are parameterized by sym-
metric or Hermitian PD matrices � and scalar ν which is greater than d−1 for real and d
for complex �.

The improper priors are the flat, the Jeffreys, and the reference priors. The MLEmay be
interpreted as the MAP estimate given the flat prior. The Jeffreys prior is the square-root
determinant of the Fisher information and is parameterization invariant. When � is real,
the Jeffreys prior is the reciprocal of the density of the Hausdorff measure with respect to
the Lebesgue measure [3]; it can therefore be interpreted as the flat prior with respect to
the Hausdorff measure. The reference prior is designed to prevent estimates from being
ill-conditioned: as may be seen in Figure 1, it favours eigenvalues that are close together.
This corresponds to better frequentist estimation properties [8]. For an introduction to the
complexWishart and inverse-Wishart distributions, see [22]. For the complex Jeffreys and
reference priors, see [23,24], respectively.

Again, these priors are not intended to form a comprehensive list but give an idea of the
kinds of choices that statisticians might make when choosing a prior for a covariance. For
more recent developments in this area, see [25,26].
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Figure 1. Median condition number by dimension and prior specification: box plots describe distribu-
tions of 100median condition numbers for each dimension and prior. Each point is themedian from 200
posterior samples based on independent data and using gLMC. The reference prior is designed to yield
smaller condition numbers than Jeffreys prior and hence better asymptotics [21].

7. Results

This section features empirical validation of the gLMC algorithm as well as an applica-
tion to learning the spectral density matrix for vector time series. For empirical validation,
we present quantile–quantile (Q–Q) and trace plots comparing the gLMC sample to the
closed-form solution made available by the conjugate prior. We then use gLMC for Her-
mitian PD matrices to learn the spectral density matrices of both simulated and LFP
time series. We use the posteriors thus obtained to get credible intervals on the squared
coherences for the vector time series.

7.1. Empirical validation

Before applying gLMC to spectral density estimation, we demonstrate validity by compar-
ing samples from empirical posterior distributions of the Gaussian inverse-Wishart model
obtained by gLMC and the closed-form solution. Note that our objective is to show that
our proposed method provides valid results, similar to those obtained based on conjugate
priors, while creating a flexible framework for eliciting and specifying prior distributions
directly over the space of PD matrices. To this end, we compare element-wise distribu-
tions with Q–Q plots and whole-matrix distributions with two global matrix summaries.
The comparisons based on 10,000 samples by the different sampling methods over 3-by-3
PD matrices are illustrated in Figure 2. The first 200 samples are discarded, and, for better
visualization, every tenth sample is kept. For the global matrix summaries, we also include
samples from an indirect approach, the log-Cholesky parameterization of the PD matrix
(currently used in Stan software implementations [27]). Starting with a lower-triangular
matrix L, one obtains a PD matrix by exponentiating the diagonal elements of L to get
L̃ and then evaluating � = L̃L̃T. Given a distribution over PD matrices, one may obtain a
distribution over lower-triangularmatrices using the inverses of these transforms and their
corresponding Jacobians.
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14 A. HOLBROOK ET AL.

Figure 2. These figures provide empirical validation for thewell-posedness of gLMC for PDmatrices. On
the top-left is a Q–Q plot comparing the gLMC (for Hermitian PDmatrices) posterior sample with that of
the closed-form posterior for the complex Gaussian inverse-Wishart model. Both real and imaginary ele-
ments are included, and points are jittered for visibility. On the top-right are posterior samples of ‘global’
matrix summaries pertaining both to gLMC (for symmetric PDmatrices), the closed-form ‘exact’ solution,
and the ‘indirect’ log-Cholesky parameterization. These summaries are the effective variance (EV) and
the effective dependence (ED), built off the covariance matrix and the correlation matrix, respectively.
On the bottom are posterior density plots of the same matrix summaries.

On the top-left panel of Figure 2, a Q–Q plot is used to compare the gLMC Hermitian
PD posterior sample to the closed-form posterior. The Q–Q plot is the gold standard for
comparing two scalar distributions using empirical samples because full quantile agree-
ment corresponds to equality of cumulative distribution functions. Points are jittered for
easy visualization, and each colour specifies a different matrix element. Note that some
colours appear twice: these double appearances correspond to real and imaginary matrix
elements. For example, pink appears at zero as well as the upper right of the plot: this colour
corresponds to a diagonal matrix element since, on account of thematrix beingHermitian,
its imaginary part is fixed at zero. Most importantly, all matrix elements fit tightly around
the line y= x, suggesting a perfect match in quantiles between empirical distributions.

On the top-right panel of Figure 2, we present samples obtained from two whole-matrix
summaries using gLMC, the ‘exact’ closed-form posterior, and the ‘indirect’ log-Cholesky
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 15

parameterization. These summaries are the EV and the ED:

EV(�) = |�|1/d, and ED(�) = 1− |corr(�)|1/d. (35)

The EV is the geometric mean of the eigenvalues of the matrix �. It provides a dimension
free summary of the total variance encoded in the matrix. The ED gets its name because
the determinant of a correlation matrix is inversely related to the magnitude of the indi-
vidual correlations that make up the off-diagonals. In addition to seeing that element-wise
distributions match, one would also like to know that their joint distributions correspond.
The EV and ED are good summaries of global matrix features and here provide empirical
evidence for the validity of gLMC for PD matrices. As we can see, the three methods have
similar posterior distributions of EV and ED (Figure 2, bottom panels).

7.2. Learning the spectral density

An important benefit of gLMC is that it enables practitioners to specify prior distributions
other than the inverse-Wishart on PDmatrices based on needs dictated by the problems at
hand. gLMC improves modelling flexibility. We use the problem of Bayesian spectral den-
sity estimation to demonstrate the possibility and advantage of using non-conjugate priors.
The spectral density matrix �(ω) and its coherence matrix R(ω) are defined in Section 2.
In the context of stationary, multivariate time series, the coherences that make up the
off-diagonals of R(ω) provide a lag-free measure of dependence between univariate time
series at a given frequency ω. Hence, these coherences are among the more interpratable
parameters of the spectral density matrix.

We compare posterior inference for these coherences between twomodels with different
priors: the first model uses the complex inverse-Wishart prior; the second uses the com-
plex reference prior [24]. The reference prior is an improper prior that has been proposed
as an alternative to Jeffrey’s prior for its superior eigenvalue shrinkage (which improves
asymptotic efficiency of estimators). We use the reference prior to emphasize the flexibility
allowed by gLMC but not as a modelling suggestion. Svensson and Nordenvaad [24] pro-
vide a Gibbs sampling routine based on the eigen-decomposition of the covariance matrix.
The reference prior’s form is provided in Appendix A.1.

We apply gLMC to learning the spectral density matrix for three distinct 4-dimensional
time series. The first is a simulated first-order vector-autoregressive (VAR1) time series
with block structure consisting of two independent, 2-dimensional VAR1 time series. The
second time series is also VAR1 but with dependencies allowed between all four of the
scalar time series of which it is composed. The third time series comes from LFP recorded
in the CA1 region of a rat hippocampus [28,29].

Figure 3 shows the first 100 samples from both VAR1 time series along with 95% poste-
rior intervals for the complex moduli of the coherences. The time series are simulated with
the form:

y(t) = �y(t − 1)+ εt , y(1) = ε1, εt ∼ N4(0, I), t = 1, . . . , 15000, (36)

where the eigenvalues of transition matrix � are bounded with absolute value less than
1 to induce stationarity. The first 10,000 data points are discarded to allow time for mix-
ing. The first row of Figure 3 belongs to the block VAR1: � is a randomly constructed,
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Figure 3. Two 4-dimensional VAR1 time series and credible intervals for their six corresponding coher-
ences measured at 20–40 Hz: the top row belongs to a block VAR1 process characterized by two
independent 2-dimensional VAR1 time series; the bottom row belongs to a full VAR1 process. The left
column shows the first 100 samples of both time series, each of which totals 5000 samples in length. The
right column shows credible intervals from posteriors obtained using the inverse-Wishart and reference
priors.

block-diagonal matrix, so the first two scalar time series are independent from the second
two. The second row of Figure 3 belongs the the second VAR1, all the scalar time series of
which are dependent on all the others. Here � is also a randomly constructed matrix but
is not block-diagonal. The intervals corresponding to the inverse-Wishart prior model are
given in orange. The intervals corresponding to the reference priormodel are given in blue.
The true coherences are represented by black points and are obtained using the following
closed-form formula for the spectral density of a VAR1 process [10]:

�(ω) = (I −� e−2π iω
)−1 Q (I −� e−2π iω

)−H . (37)

Here Q is the covariance matrix of the additive noise εt , and (·)−H denotes the inverse
conjugate transpose. For the block VAR1 example, both models capture the true, non-null
coherences (i.e. those given on the far left and the far right), but neither captures the null
coherences. This ismore than satisfactory, since coherences equal to zero imply the identity
for a covariance matrix. By looking closely, one can see that the first and second time series
(orange and green) are indeed strongly dependent on each other, as interval ‘1:2’ suggests.
For the full VAR1 example, both models capture five out of six true coherences, but the
reference prior model gets closer to the truth than the inverse-Wishart model does.
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Figure 4. A 4-dimensional LFP signal with credible intervals for six coherences measured at 20–40 Hz
(left) and 40–160 Hz (right). First 200 samples are shown for ease of visualization; the multi-dimensional
time series totals 4000 samples in length. Coherence profiles are remarkably similar between the two
frequency bands considered.

We use the same tools to detect coherences between LFP signals simultaneously
recorded from the CA1 region of a rat hippocampus prior to a memory experiment [28].
Two of the LFP signals are recorded on one end of the CA1 axis, and the other two LFP sig-
nals are recorded at the opposite end. Figure 4 shows the first 200 of 4000 samples (recorded
at 1000Hz) and 95% credible intervals for the coherences at two different frequency bands:
20–40Hz and 40–160Hz. The spatial discrepancy is reflected in the posterior distributions of
the individual coherences. Both bands show similar coherence patterns, where spatial loca-
tion appears to dictate strength of coherence: the leftmost and rightmost pairs are closer to
each other in space, while thecentre pairs are farther from each other. This reflects what is
apparent in the top of Figure 4, where the first and second time series (orange and green)
are dependent, and the third and fourth time series (blue and purple) are dependent. These
correspond to the intervals labelled ‘1:2’ and ‘3:4’, respectively. The credible intervals are
smaller for the 20–40Hz band because that band has only 1/6 the data of the 40–160Hz
band. Between prior models, the intervals differ more for the 40–160Hz band. This is
counter-intuitive since the influence of the prior distribution is often assumed to diminish
with the size of the data set. One question is whether this surprising result is related to
the reference prior’s being the prior that is ‘maximally dominated by the data’ [30]. These
differences – differences between posterior distributions for the two prior models – com-
municate that other prior distributions might provide tangible differences between results
in spectral analysis and that it would be useful to understand which prior distributions are
appropriate in which contexts.
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18 A. HOLBROOK ET AL.

8. Discussion

We presented gLMC an MCMC methodology for Bayesian inference on general Rieman-
nian manifolds. We outlined its relationship to other geometric extensions of HMC and
showed how to apply gLMC to both symmetric and Hermitian PD matrices. We demon-
strated empirical validity using both element-wise and whole-matrix comparisons against
the conjugate inverse-Wishartmodel. Finally, we applied gLMConHermitian PDmatrices
to Bayesian spectral density estimation. The algorithm proved effective for detecting true
coherences of simulated time series, as well as recovering spatial discrepancies between
real-world LFP signals.

We see three branches of inquiry stemming from this work: the first is algorithmic; the
second, theoretical; the third, methodological. First, what variations of HMC might help
extend gLMC over PD matrices into higher dimensions? There are multiple such exten-
sions that are orthogonal to gLMC. Examples are windowed HMC, geometric extensions
to the NUTs algorithm, shortcut MCMC, and look-ahead HMC [5,31,32]. Auto-tuning
will prove useful: even within the same dimension, different samples will dictate different
numbers of leapfrog steps and step-sizes. From the theoretical standpoint, the canonical
metric on the space of PD matrices is closely related to the Fisher information metric
on covariance matrices: how should one characterize this intersection between informa-
tion geometry and Riemannian symmetric spaces, and howmight this relationship inform
Bayes estimator properties or future variations on gLMC? Methodologically, much work
needs to be done in prior elicitation for Bayesian spectral density estimation. Which pri-
ors on Hermitian PD matrices should be used for which problems, what are the costs and
benefits, and are there priors over symmetric PD matrices that need to be complexified
(cf. [25,26])? A clear delineation will be useful for practitioners in Bayesian time series
research.

Note

1. In this section we focus on the space of Hermitian PD matrices, since the class of symmetric
matrices belongs to the broader class of Hermitian matrices. If the reader is primarily interested
in the smaller class, then she is free to substitute R for C, transpose (·)T for conjugate transpose
(·)H , and the orthogonal group O(d) for the unitary group U(d).
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Appendix. Real and complexmatrix derivatives

The derivative of a univariate, real valued function with respect to a matrix is most cleanly calcu-
lated using the matrix differential. This is true whether f : Mp(R) �→ R or f : Mp(C) �→ R, that
is, whether f is a function over real p× p matrices or complex p× p matrices. As an example, we
consider the multivariate Gaussian distribution with mean 0 and covariance �. First, let f be the
probability density function over real valued Gaussian random vectors yn ∈ Rd, n = 1, . . . ,N. Let
Y be the d× N concatenation of these N i.i.d. random variables. Then the log density is given by

log f (YN ,�) ∝ −N
2
log |�| − 1

2

N∑
n=1

yT
n�−1yn

= −N
2
log |�| − 1

2
tr{�−1YYT}. (A1)

We apply the matrix differential to (A1) using two general formulas:

d log |�| = tr{�−1d�}, and d�−1 = −�−1 (d�)�−1, (A2)

rendering

d log f (Y ,�) = −N
2
tr{�−1d�} + 1

2
tr
{
�−1(d�)�−1YYT

}

= −N
2
tr{(d�)�−1} + 1

2
tr
{
(d�)�−1YYT�−1

}
. (A3)

Finally, we relate the matrix differential to the gradient with the fact that, for an arbitrary function g,

dg(�) = tr{(d�)A} ⇐⇒ ∇� g(�) = A. (A4)

This gives the final form of the gradient of the log density function with respect to covariance �:

∇� log f (Y ,�) = −N
2

�−1 + 1
2
�−1YYT�−1. (A5)
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For more on the matrix differential, see [33]. The complex matrix differential is treated in [34] and
has a similar form real valued functions. The log density of the multivariate complex Gaussian with
mean 0 is given by

log f (Y ,�) ∝ −N log |�| −
N∑

n=1
yHn �−1yn

= −N log |�| − tr{�−1YYH}, (A6)

where (·)H denotes the conjugate transpose. Note that the log density is scaled by a factor of two
compared to the real case. The resulting gradient is

∇� log f (Y ,�) = −N�−1 +�−1YYH�−1. (A7)

A.1 The complex reference prior

Gradients of prior probabilities are calculated in a similar way. We demonstrate for the complex
reference prior. Let λi, i = 1, . . . , d be the decreasing eigenvalues of Hermitian PD matrix �. Then
the complex reference prior has the following form:

p(�) ∝ d�
|�|∏k<j(λk − λj)2

. (A8)

To use the above approach for deriving the matrix derivatives, we need to be able to write the differ-
ential dλi in terms of the matrix differential d�. Magnus et al. [33] provides the formula when all
eigenvalues are distinct:

dλi = tr

⎛
⎝ d∑

j=1
V−1ij �j−1d�

⎞
⎠ , (A9)

where V is the Vandermonde matrix:

VT =

∣∣∣∣∣∣∣∣∣

1 λ1 λ21 · · · λn−21 λn−11
1 λ2 λ22 · · · λn−22 λn−12
...

...
...

. . .
...

...
1 λn λ2n · · · λn−2n λn−1n

∣∣∣∣∣∣∣∣∣
. (A10)

We now calculate the gradient of the log of the complex reference prior:

d log p(�) = −d log |�| − 2
∑
k<j

d log(λk − λj)

= −tr(�−1d�)− 2
∑
k<j

dλk − dλj
λk − λj

= −tr(�−1d�)− 2
∑
k<j

tr

( d∑
i=1

(
V−1ki − V−1ji

)
�i−1d�

)
/(λk − λj). (A11)

Combining this with Equations (A2) and (A4) renders matrix gradient

∇� log p(�) ∝ −�−1 − 2
∑
k<j

( d∑
i=1

(
V−1ki − V−1ji

)
�i−1

)
/(λk − λj). (A12)
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