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a b s t r a c t

We present the simplicial sampler, a class of parallel MCMC methods that generate
and choose from multiple proposals at each iteration. The algorithm’s multiproposal
randomly rotates a simplex connected to the current Markov chain state in a way that
inherently preserves symmetry between proposals. As a result, the simplicial sampler
leads to a simplified acceptance step: it simply chooses from among the simplex
nodes with probability proportional to their target density values. We also investigate a
multivariate Gaussian-based symmetric multiproposal mechanism and prove that it also
enjoys the same simplified acceptance step. This insight leads to significant theoretical
and practical speedups. While both algorithms enjoy natural parallelizability, we show
that conventional implementations are sufficient to confer efficiency gains across an
array of dimensions and a number of target distributions.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Generating random samples from probability distributions is a crucial task in many of the quantitative sciences. Markov
hain Monte Carlo (MCMC) algorithms sample from target distributions by constructing Markov chains that maintain their
argets as equilibrium distributions. The classic Metropolis–Hastings (MH) algorithm [13,21] builds such a Markov chain
y iteratively generating a single proposal state conditioned on the current state and randomly accepting or rejecting that
roposal based on a ratio involving the target and proposal densities evaluated at the current and proposed states. The
ajority of MCMC techniques share this general structure, randomly proposing and accepting a single proposal at each

teration, but some relatively recent methods make use of multiple proposals (or, multiproposals) at each step with the
oals of, e.g., reducing autocorrelation between Markov chain states or making better use of parallel computing resources.
Liu et al. [19] develop the first such multiproposal technique, the multiple-try Metropolis algorithm (MTM). Each

teration of MTM starts by proposing multiple states θ∗

p , p ∈ {1, . . . , P} from a proposal distribution q(θ(s), ·) and choosing
a candidate θ∗ from among them with probability proportional to their respective target density values π (θ∗

p). After this,
the MTM algorithm generates an additional P − 1 states θ′

1, . . . , θ
′

P−1 from the distribution q(θ∗, ·). In the case that q(·, ·)
s symmetric, the MTM algorithm then accepts θ∗ with probability

1 ∧
π (θ∗

1) + · · · + π (θ∗

P )
π (θ′

1) + · · · + π (θ′

P−1) + π (θ(s))
. (1)

Whereas MTM is the most widely used multiproposal MCMC algorithm, it has certain drawbacks. First, to use P proposals,
one must generate O(2P) states and evaluate the target density π (·) O(2P) times. Second, after randomly selecting a
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otentially good candidate state θ∗, one might nonetheless reject it based on the target density values of the other
roposed states within the Metropolis step that uses (1). Third, Yang and Liu [32] rigorously prove superior mixing of
H over MTM albeit in the simplified setting of independence proposals. Perhaps most importantly, Tjelmeland [29]
hows that MTM’s additional Metropolis step and its extra noise are simply not necessary.
Next, Tjelmeland [29] and Frenkel [9] develop multiproposal MCMC algorithms that do not require the same binary

ccept–reject step as MTM. Tjelmeland [29] posits a collection of P + 1 random variables Θ∗
= (θ∗

1, . . . , θ
∗

P+1) and
a probability distribution with density q(θ∗

p,Θ
∗) that describes the probability of proposing the entire set Θ∗ given

θ∗

p . Tjelmeland [29] augments the state space with a random variable p ∈ {1, . . . , P + 1} indicating θp as the current
state of the Markov chain and iterates between generating P proposals conditioned on the current state θ(s)

= θ∗

P+1 and
randomly selecting a new value for p with probabilities(

π (θ∗

1)q(θ
∗

1,Θ
∗)∑P+1

p=1 π (θ∗

p)q(θ
∗

p,Θ
∗)

,
π (θ∗

2)q(θ
∗

2,Θ
∗)∑P+1

p=1 π (θ∗

p)q(θ
∗

p,Θ
∗)

, . . . ,
π (θ∗

P+1)q(θ
∗

P+1,Θ
∗)∑P+1

p=1 π (θ∗

p)q(θ
∗

p,Θ
∗)

)
. (2)

In addition to these probabilities, Tjelmeland [29] advances two further transition strategies and two structured proposal
strategies, which we discuss below. Finally, he proposes building estimators using a weighted average with weights equal
to the probabilities (2) and proves that this estimator is consistent assuming the chain converges to equilibrium. Frenkel
[9] also uses the probabilities (2) as weights to build the same estimator but in the context of statistical physics. Frenkel [9]
provides an informal physics argument for the correctness of his approach, stating that it fails to maintain detailed balance
but does maintain ‘superdetailed’ balance. More recently, Calderhead [6] adds an additional subroutine to the algorithm
of Tjelmeland [29] so that, at each MCMC iteration, one simulates a random walk on the finite state space composed of
the P+1 states using transition probabilities closely related to (2). Ultimately, however, Yang et al. [31] and Schwedes and
Calderhead [26] show that the weighted estimators of Tjelmeland [29] and Frenkel [9] constitute Rao-Blackwellizations
over the index variable p within the framework of Calderhead [6] and thus enjoy reduced variance.

Despite theoretical results favoring the use of weighted estimators that feature all proposals at each step, there are
practical downsides to this approach. Here, one must: either (1) save a massive S×D× (P+1) tensor to memory, where S
s the total number of MCMC iterations; or (2) know what the estimand of interest is beforehand and maintain a running
verage of each MCMC iteration’s contribution to the weighted estimator. Importantly, Schwedes and Calderhead [26]
mpirically demonstrate that the non-Rao-Blackwellized estimators of Calderhead [6] can perform poorly when a small
umber of jumps occur between the P +1 states of the proposal set. On the one hand, this result is disconcerting because
heir experimental baseline of 1×P jumps for P = 1000 proposals performs much worse than 16×P jumps for the same
umber of proposals. Time spent iterating between proposed states is time not spent exploring the target distribution.
n the other hand, these empirical results rely on a specific multiproposal scheme in which

θ∗

1, . . . , θ
∗

P
iid
∼ ND(θ∗

P+1,Σ ) (3)

and do not necessarily extend to other multiproposal strategies.
With this in mind, we consider it worthwhile to further develop structured multiproposal methods that maintain

scalability while not requiring many jumps within the proposal set. As mentioned above, Tjelmeland [29] proposes two
strategies. Proposal alternative 1, or ‘P1’, first generates a Gaussian random variable θ0 centered at the current state θ∗

P+1
and next generates P proposals centered at θ0:

θ∗

1, . . . , θ
∗

P
iid
∼ ND(θ0,Σ ) , θ0 ∼ ND(θ∗

P+1,Σ ) . (4)

Here, the two D-dimensional covariance matrices take the same form so that all Θ∗
= (θ∗

1, . . . , θ
∗

P+1) share the same
expected distance from the center θ0. In some ways, the recent work of Luo and Tjelmeland [20] builds on this proposal
strategy. They extend this multiproposal’s simple star-shaped structure, where θ0 is the center and (θ∗

1, . . . , θ
∗

P+1) are
the flairs, to general acyclic graphs and tailor their proposals to models with certain discrete structures. Unlike his first
proposal alternative, Tjelmeland [29]’s Proposal alternative 2, or ‘P2’, only applies to the scenario when P = 2 and
constructs proposal sets Θ∗

= (θ∗

1, θ
∗

2, θ
∗

3) that are equidistant from a center θ0 and ‘maximally spread’. Setting θ∗

3 to
equal θ(s), the current state of the Markov chain, this scheme satisfies the following relations:

θ∗

1 = θ0 + nv1 , θ∗

2 = θ0 −
n
2v1 +

√
3n
2 v2 , θ0 = θ∗

3 +
n
2v1 +

√
3n
2 v2 ,

v1 = u1 , v2 =

(
ID−u1uT1

)
u2

∥

(
ID−u1uT1

)
u2∥2

, n ∼ N
(
0, σ 2/3

)
, u1, u2

iid
∼ Uniform(SD−1) .

(5)

In words, one first generates two independent random variables that are each uniformly distributed on the sphere and
forces them to be orthogonal to each other. Next, one generates the normally distributed n and obtains θ0 followed by θ∗

1
and θ∗

2. Straightforward calculations show that the proposals θ∗

1, θ
∗

2 and θ∗

3 are indeed the same distance from the center
θ0. Similar calculations show that the proposals θ∗

1, θ
∗

2 and θ∗

3 are all equidistant from each other and together constitute
an equilateral triangle with random edge lengths.

Tjelmeland [29] does not specify how one might extend his second proposal alternative to accommodate multipro-
posals when P > 2. In the following, we accomplish this multivariate generalization by first noting that the equilateral
2
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Fig. 1. Regular simplices. The 0-simplex is a point; the 1-simplex is a line connecting two points; the regular 2-simplex is an equilateral triangle;
and the regular 3-simplex is a tetrahedron, the faces of which are equilateral triangles.

Fig. 2. Petrie polygon projections [7] of higher-dimensional, regular simplices preserve symmetry but not distances.

triangle is a regular 2-simplex. Generally, a D-dimensional space can hold as a many as D + 1 points that are pairwise
quidistant. If D̃ ≤ D + 1, the points v1, . . . , vD̃ ∈ RD that satisfy

∥vd − vd′∥2 =

{
λ > 0 , d ̸= d′ ,

0 , d = d′ ,

identify a regular polytope called a D̃-simplex. Fig. 1 shows the regular simplices that fit in 3-dimensional space. Fig. 2
shows Petrie polygon projections [7] that are helpful for visualizing higher dimensional regular simplices. While we use
the regular simplex as our starting point, the multistep nature of (5) makes it unclear how one might actually generate
proposals when P > 2, an endeavor that doubtless involves more random variables with more complicated relationships.
To preserve simplicity in this multivariate setting, in Section 3 we generate proposals using a matrix distribution over
the orthogonal group OD, which consists of D × D matrices Q satisfying QTQ = ID. Because OD is a compact topological
group, it admits a unique normalized, left-invariant measure H(·) called the Haar measure [8]. In symbols,

H(OD) = 1 , H (QB) = H (B)

for Q ∈ OD and B a Borel set on OD. The Haar measure on OD is not only useful for constructing simple multivariate
proposals: its uniformity helps maintain a simplified acceptance step as well (theorem 2) .

Bearing in mind the poor performance of simple multiproposal strategies when the number of jumps between
proposals is small [26], we are motivated to develop structured multiproposal strategies that do not require Rao-
Blackwellization, or many inter-proposal jumps, and thus spend more time exploring the entire target distribution. We
therefore develop a multivariate multiproposal framework that maintains the principles of Tjelmeland [29]’s second
proposal strategy while also achieving greater simplicity. In the following, we develop the simplicial sampler and its
extensions, prove algorithmic correctness and demonstrate usefulness of our approach on a range of target distributions.
We start by deriving sufficient conditions for simplifying the acceptance probabilities (2).

2. Simplified acceptance probabilities

We wish to sample from the target distribution with density π (θ) for θ ∈ RD. Given the current Markov chain state
(s)
θ , we use the following steps to advance the Markov chain.

3
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1. Propose states Θ∗
= (θ∗

1, . . . , θ
∗

P , θ
∗

P+1) = (θ∗

1, . . . , θ
∗

P , θ
(s)) according to the distribution q(θ(s),Θ∗);

2. Calculate densities π (θ∗

p) for p ∈ {1, . . . , P + 1};
3. Randomly select a single state θ∗

p from the set Θ∗ according to the simplified selection probabilities

(
π1(Θ∗), . . . , πP+1(Θ∗)

)
=

(
π (θ∗

1)∑P+1
p=1 π (θ∗

p)
, . . . ,

π (θ∗

P+1)∑P+1
p=1 π (θ∗

p)

)
; (6)

4. Set θ(s+1)
= θ∗

p .

his transition rule uses a modified acceptance probability (2) that does not include the proposal density terms. As such,
t rarely leaves the target distribution invariant. We require a further sufficient condition to guarantee that π (θ) is a
tationary distribution for our Markov chain.

roposition 1 (Tjelmeland 29). The Markov chain with the above transition rule maintains detailed balance with respect to
he target distribution π (θ) if q(·, ·) satisfies

q(θ∗

1,Θ
∗) = · · · = q(θ∗

p,Θ
∗) = · · · = q(θ∗

P+1,Θ
∗) , (7)

and so π (θ) is a stationary distribution of the chain.

Proof. Let p(θ, dθ) be the transition kernel associated with the transition from an arbitrary state θ according to the above
steps 1–4. Then

p(θ, dθ) =

P+1∑
p=1

∫
(RD)⊗P

πp(Θ) δθp (dθ) q(θ,Θ) dθ1 . . . dθP .

For any two states θ, θ̃, the following holds:

π (θ)dθ p(θ, d̃θ) = π (θ)dθ
P+1∑
p=1

∫
(RD)⊗P

πp(Θ∗) δθ∗
p (d̃θ) q(θ,Θ

∗) dθ∗

1 . . . dθ∗

P

= π (θ)dθ
P+1∑
p=1

∫
(RD)⊗P

π (̃θ)∑P+1
p′=1 π (θ∗

p′ )
d̃θ q(θ,Θ∗)

∏
p′ ̸=p

dθ∗

p′

= π (̃θ)d̃θ
P+1∑
p=1

∫
(RD)⊗P

π (θ)∑P+1
p′=1 π (θ∗

p′ )
dθ q(̃θ,Θ∗)

∏
p′ ̸=p

dθ∗

p′

= π (̃θ)d̃θ
P+1∑
p=1

∫
(RD)⊗P

πp(Θ∗) δθ∗
p (dθ) q(̃θ,Θ

∗) dθ∗

1 . . . dθ∗

P

= π (̃θ)d̃θ p(̃θ, dθ) ,

where we use assumption (7) in the third line. □

Although the proof of Proposition 1 is new, the result itself is a special case of a result from Tjelmeland [29], who
argues that his method constitutes a Gibbs sampler that leaves the joint and marginal distributions of π (θ)q(θ,Θ∗)
invariant. Proposition 1 underlines what one may readily gather from the acceptance probabilities (2). Namely, it may
sometimes prove useful to design multiproposals that maintain criterion (7) insofar as such proposals obviate the need
for computing proposal densities. In the following, we show that the Gaussian centered multiproposal (4) provides just
such a multiproposal mechanism. Under this scheme, consider the DP-vector θ∗

−p := vec(Θ∗

−p) obtained by removing
the state θ∗

p , or the pth column, from the proposal set Θ∗ and applying the vectorization operator. Integrating over all
possible θ0 gives the conditional distribution of θ∗

−p given θ∗

p:

θ∗

−p ∼ NDP

⎛⎜⎜⎜⎜⎜⎝1P ⊗ θ∗

p =

⎛⎜⎜⎜⎝
θ∗

p
θ∗

p
...

θ∗

p

⎞⎟⎟⎟⎠ ,
(
1P1T

P + IP
)
⊗ Σ =

⎛⎜⎜⎜⎜⎜⎝
2Σ Σ · · · · · · Σ
Σ 2Σ Σ · · · Σ
... Σ 2Σ

...
...

...
. . . Σ

Σ Σ · · · Σ 2Σ

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ .

If one does not adapt the D×D proposal covariance Σ , then one may precompute the DP ×DP covariance matrix inverse
in O(D3P3) time and store it using O(D3P3) memory. In high-dimensional settings where such storage is not possible, one
4
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ay store only the D × D inverse covariance Σ−1 and fill the DP × DP inverse covariance at each step with complexity
(D2P2) using the formula (A ⊗ B)−1

= A−1
⊗ B−1. Once one has this inverse, the inner product term in each

q(θ∗

p,Θ
∗) ∝ exp

(
−

1
2
(θ∗

−p − θ∗

p)
T ((1P1T

P + IP
)
⊗ Σ

)−1
(θ∗

−p − θ∗

p)
)

requires O(D2P2) floating point operations. The upshot is an O(D2P3) cost to compute all P+1 proposal densities q(θ∗

p,Θ
∗).

ut if one adapts Σ following Haario et al. [12], then this acceptance mechanism requires: an O(D3) matrix inversion
for the updated Σ at each step; an O(P2D2) Kronecker product to construct the DP × DP covariance matrix; and the
O(D2P3) floating point operations to compute the P + 1 proposal densities q(θ∗

p,Θ
∗). Thankfully, it turns out, none of

hese computations are necessary.

emma 1. The Gaussian centered multiproposal q(θ(s),Θ∗) defined by

θ∗

1, . . . , θ
∗

P
iid
∼ ND(θ0,Σ ) , θ0 ∼ ND(θ∗

P+1,Σ ) .

atisfies symmetry relation (7), namely

q(θ∗

1,Θ
∗) = · · · = q(θ∗

p,Θ
∗) = · · · = q(θ∗

P+1,Θ
∗) .

Proof. Let p(·, ·) denote the generic probability density function evaluated at the right and conditioned on the left, and
let φ(·, ·) an analogous multivariate Gaussian density with dependence on the covariance suppressed. For two arbitrary
indices p, p′

∈ {1, . . . , P + 1},

q(θ∗

p,Θ
∗) − q(θ∗

p′ ,Θ∗) =

∫
RD

p(θ∗

p, θ0) p(θ0, θ
∗

−p) dθ0 −

∫
RD

p(θ∗

p, θ0) p(θ0, θ
∗

−p) dθ0

=

∫
RD

(
p(θ∗

p, θ0) p(θ0, θ
∗

−p) − p(θ∗

p′ , θ0) p(θ0, θ
∗

−p′ )
)
dθ0

=

∫
RD

⎛⎝φ(θ∗

p, θ0)
∏
p′′ ̸=p

φ(θ0, θ
∗

p′′ ) − φ(θ∗

p′ , θ0)
∏

p′′′ ̸=p′

φ(θ0, θ
∗

p′′′ )

⎞⎠ dθ0

=

∫
RD

⎛⎝ P+1∏
p′′=1

φ(θ0, θ
∗

p′′ ) −

P+1∏
p′′′=1

φ(θ0, θ
∗

p′′′ )

⎞⎠ dθ0 = 0 .

In the third line, we use the Gaussianity and conditional independence structure of the multiproposal. In the fourth line,
we use the symmetry of the Gaussian density function. □

This simple result fills in a gap in Tjelmeland [29]: namely, it relates the symmetry in a proposal strategy to a
simplified acceptance mechanism (6). Moreover, subsequent work [11] builds on this result by examining cases in which
structured proposals lead to simplified acceptance probabilities. In the following, we develop a multivariate extension
of the multiproposal (5) and show that it also satisfies symmetry relation (7) and thus also qualifies for the simplified
acceptance mechanism (6).

3. Simplicial sampling

We develop a proposal mechanism and a few variations that satisfy symmetry relation (7) and help our basic algorithm
preserve reversibility with respect to the target π (θ). This method uses certain mathematical objects introduced in
Section 1: namely, the regular D-simplex, the orthogonal group OD and the uniform Haar measure over the orthogonal
group H(OD). Start with a regular simplex identified by a set of fixed vertices v1, . . . , vD+1 ∈ RD that satisfies vD+1 = 0.
Equating the number of new proposals P with the state space dimension D, the simplicial sampler generates and chooses
from proposals θ∗

1, . . . , θ
∗

D+1 as follows.

1. Sample Q ∼ H(OD).
2. Rotate and translate the simplicial vertices (v1, . . . , vD, 0) ↦−→ Q(v1, . . . , vD, 0) + θ(s)

=: (θ∗

1, . . . , θ
∗

D+1).
3. Draw a single sample θ∗

d from (θ∗

1, . . . , θ
∗

D+1) with probability proportional to π (θ∗

d).
4. Set θ(s+1)

= θ∗

d .

In short, the simplicial sampler advances its Markov chain by randomly rotating a set of D equidistant vertices about the
current state θ(s) (Fig. 3) and randomly selecting the next state from among all D + 1 vertices of the resulting simplex.

A modified simplicial sampler that only generates a single proposal reduces to Barker’s acceptance criterion [3]

π (θ∗)/
(
π (θ∗) + π (θ(s))

)

5
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Fig. 3. A simplicial sampling multiproposal for D = 3. A proposal set is obtained by rotating three simplex vertices about current state θ(s) .

with a symmetric proposal distribution. Just as Barker’s criterion is suboptimal with respect to the Peskun ordering [23],
our criterion is also suboptimal. With this in mind, Tjelmeland [29] provides an algorithm that manipulates the acceptance
probabilities (2), of which our simplified acceptance probabilities are a special case.

Importantly, the random rotation step satisfies symmetry relation (7).

Lemma 2. The simplicial sampler multiproposal q(θ(s),Θ∗) defined by

(v1, . . . , vD, 0) ↦−→ Q(v1, . . . , vD, 0) + θ(s)
=: (θ∗

1, . . . , θ
∗

D+1) for Q ∼ H (OD)

satisfies symmetry relation (7), namely

q(θ∗

1,Θ
∗) = · · · = q(θ∗

d,Θ
∗) = · · · = q(θ∗

D+1,Θ
∗) .

Proof. Start by translating coordinates so that θ(s)
= 0. We want to show that q(0,Θ∗) = q(θ∗

d,Θ
∗) for an arbitrary

θ∗

d ∈ Θ∗. We focus on the case d ≤ D, since the alternative case is trivial. Since the Haar measure H (OD) is uniform on
OD, we only need to show the existence of a rotation Qd ∈ OD that maps

(v1, . . . , vD) ↦−→ (θ∗

1, . . . , θ
∗

d−1, 0, θ
∗

d+1, . . . , θ
∗

D) .

The key is recognizing that the unique reflection R that exchanges 0 and θ∗

d leaves all other vertices unchanged because
they are equidistant from 0 and θ∗

d and inhabit the hyperplane that splits them evenly. In symbols, Rθ∗

d′ = θ∗

d′ for d′
̸= d.

Thus

QTRθ∗

d′ = QT θ∗

d′ = vd′ , ∀d′
̸= d ,

and

QTR0 = QT θ∗

d = vd .

It follows that (QTR)T = RQ is the desired rotation matrix Qd. □

Fig. 4 provides a stylized visualization of this argument in the 2D setting when Q represents a 60◦ rotation clockwise
about θ(s). Taken together, Lemma 2 and Proposition 1 assert that the simplicial sampler maintains detailed balance with
respect to the target distribution.

Theorem 1. If the simplicial sampler’s multiproposal is π-irreducible and absolutely continuous with respect to π (θ), then
π (θ) is the unique stationary and limiting distribution of the Markov chain, and the strong law of large numbers holds.

Proof. The result is a simple combination of the sampler’s reversibility with respect to π (θ) and the aperiodicity that
arises from its self-loop, i.e., the ability to set θ(s+1) to θ(s) [28]. □

While π-irreducibility is a major hypothesis of Theorem 1, we do not formally prove that the simplicial sampler exhibits
generally irreducible behavior. That said, there are two intuitive reasons for thinking that the sampler produces generally
irreducible Markov chains. First, the simplicial sampler can return to an arbitrarily small ball around a given state within
just two steps with positive probability: the first iteration accepts a state λ away from the current state, and the second
iteration accepts a state in the neighborhood of the preceding state. Second, the simplicial sampler can amble arbitrarily
far away from a given state in the manner that a distracted geometry student can walk a compass clear off their desk.
The need for a formally justified sampler leads us to randomly scale the proposal simplex in Section 3.1.1.
6
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Fig. 4. Illustrating key argument of Lemma 2 for D = 2. Q is the simplicial sampler’s random rotation about θ(s) and R is a reflection that exchanges
given proposal θ∗

2 with the current state θ(s) while preserving all other proposals.

.1. Variations

.1.1. Gaussian simplicial sampling
If we scale the simplex edge lengths by the square root of a chi-square random variable, the proposals will have

ultivariate Gaussian marginal distributions. The orthogonal group OD acts transitively on the sphere SD−1, i.e., it takes
ny point on SD−1 to any other [17]. For this reason, left multiplying a single point on SD−1 by a Haar distributed rotation
atrix Q ∼ H(OD) is one method for drawing a sample from the sphere’s uniform distribution. On the other hand, it is
well known fact that one may obtain a standard D-dimensional Gaussian vector by uniformly sampling a single point
n the sphere SD−1 and scaling that point by the square root of an independently sampled χ2 random variable with D
egrees of freedom. Randomly scaling the simplicial edge length in a similar manner provides the following variation that
e call the Gaussian simplicial sampler.

1. Independently sample r ∼ χ2(D) and Q ∼ H(OD).
2. Rotate, scale and translate the vertices (v1, . . . , vD, 0) ↦−→

√
rQ(v1, . . . , vD, 0) + θ(s)

=: (θ∗

1, . . . , θ
∗

D+1).
3. Draw a single sample θ∗

d from (θ∗

1, . . . , θ
∗

D+1) with probability proportional to π (θ∗

d).
4. Set θ(s+1)

= θ∗

d .

By the above discussion, each of the proposals θ∗

d for d ∈ {1, . . . ,D} has a Gaussian marginal distribution with mean θ(s)

and covariance matrix λ2ID, where λ is still the simplicial edge length. Because of its random scaling, a stronger result
than Theorem 1 applies to the Gaussian simplicial sampler.

Corollary 1. Any distribution π (θ) with support RD is the unique stationary and limiting distribution of the Gaussian simplicial
sampler that targets it, and the strong law of large numbers holds.

Proof. All that needs to be established is π-irreducibility and absolute continuity. The latter condition is accomplished
by hypothesis. The former condition is accomplished by the sufficient condition [28] that∫

A
q(θ0,Θ

∗)dθ∗

d > 0 , if
∫
A
π (θ)dθ > 0, d ∈ {1, . . . ,D} , A ⊂ RD .

This condition is itself accomplished by the unbounded nature of the multiproposal’s χ2 scaling. All edges are scaled by
the same random variable, and the symmetry of the proposal simplex is therefore maintained. Because the random scaling
is independent of the random rotation, the conditions within the proof of Lemma 2 remain exactly the same. □

In Section 5, we show that its random scaling gives the Gaussian simplicial sampler improved performance for a
multimodal target distribution.

3.1.2. Preconditioned simplicial sampling
For C ≻ 0, a D × D and real-valued matrix, the preconditioned simplicial sampler takes the following steps.

1. Sample Q ∼ H(OD).
2. Rotate, precondition and translate the vertices (v1, . . . , vD, 0) ↦−→ C1/2Q(v1, . . . , vD, 0) + θ(s)

=: (θ∗

1, . . . , θ
∗

D+1).
3. Draw a single sample θ∗

d from (θ∗

1, . . . , θ
∗

D+1) with probability proportional to π (θ∗

d).
4. Set θ(s+1)

= θ∗

d .

he matrix C1/2Q is itself a rotation in the Euclidean space equipped with inner product ⟨v, v′
⟩C−1 := vTC−1v′ (Fig. 5).

Corollary 2. The guarantees of Theorem 1 apply to the preconditioned simplicial sampler as well.
7
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Fig. 5. The preconditioned simplicial sampler’s rotations about θ(s) with respect to a non-standard Euclidean metric. To a viewer relying on the
standard Euclidean metric, fixed-length edges appear to lengthen and shorten as the simplex is rotated 90◦ according to the standard metric about
he axis perpendicular to the page.

roof. The preconditioned simplicial sampler maintains detailed balance with respect to its target distribution π (θ)
ecause it satisfies symmetry relation (7). The proof takes the exact same form as that of Lemma 2, replacing Qd with
1/2Qd. □

Corollaries 1 and 2 combine to guarantee a unique stationary distribution and strong law of large numbers for a
reconditioned Gaussian simplicial sampler, and we explore this algorithm in Section 5.

.1.3. Adaptive simplicial sampling
As has been established for other MCMC algorithms, it is often useful to adapt the simplicial sampler multiproposal.
e employ two distinct methods of adaptation in Section 5. Both methods use the diminishing adaptation strategy [24],
hich sacrifices guarantees of a strong law of large numbers but maintains a weak law. The first adapts all simplex
dge lengths while keeping them equal so as to achieve a desired ‘acceptance’ rate. Although the simplicial sampler
oes not use a classical accept-reject step, we can check whether state θ(s+1) equals θ(s) and call this an acceptance

or rejection accordingly. The second adapts the preconditioning matrix C following the proposal covariance adaptation
outlined in Haario et al. [12]. In practice, we find it useful to combine these two adaptation schemes when implementing
the preconditioned simplicial sampler.

3.1.4. Extra-dimensional simplicial sampling
The final variation for the simplicial sampler uses a number of proposals that is larger than the dimensionality of the

target distribution, i.e., P > D. Let W =
(
ID×D, 0D×(P−D)

)
be the wide D×P matrix for which multiplication selects the first

D elements of any P-vector. Letting each vp, p ∈ {1, . . . , P}, be a P-dimensional vector, the extra-dimensional simplicial
sampler works as follows.

1. Sample Q ∼ H(OP ).
2. Rotate, precondition and translate the vertices (v1, . . . , vP , 0P ) ↦−→ Q(v1, . . . , vP , 0P ) + (θ(s)T , 0T

P−D)
T

=: (θ∗

1, . . . ,

θ∗

P+1).
3. Draw a single sample Wθ∗

p from W(θ∗

1, . . . , θ
∗

P+1) with probability proportional to π (Wθ∗

p).
4. Set θ(s+1)

= Wθ∗

p .

One may interpret the application of W as a form of preconditioning with preconditioner C1/2
= W. In Section 3.1.2, we

argue that the guarantees of Lemma 2 apply to the preconditioned simplicial sampler because C1/2Q is a random rotation
in Euclidean space with inner product ⟨v, v′

⟩C−1 := vTC−1v′. Following this analogy, we have

C = WTW =

(
ID 0D×(P−D)

0(P−D)×D 0(P−D)×(P−D)

)
= C+ ,

for C+ the Moore–Penrose inverse [14]. Due to the degeneracy of C+, the resulting form ⟨v, v′
⟩C+ := vTC+v′ is no longer an

inner product, and we cannot assert that the extra-dimensional algorithm inherits the promises of Lemma 2. Nonetheless,
limited empirical experiments do show the algorithm providing accurate results, and we find it helpful to visualize the
sampler in Section 5.3.

4. Computational considerations

The real-world performance of an algorithm depends on its computational complexity, the language it is written
in and the hardware it is implemented on. It also depends on how well one codes it up, e.g., efficient use of random
access memory and parallelization when available. We separate these considerations into multiproposal and acceptance
mechanisms, and the exact weight one assigns to the two steps will depend on the computational complexity of the target
distribution.
8
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4

4

.1. Multiproposal mechanisms

.1.1. The simplicial sampler multiproposal
The simplicial sampler requires the O(D3) generation of a random rotation Q ∼ H(OD). The most common way to

perform this step is to generate a D × D matrix of standard normals and then perform the QR factorization. Once one
has the orthogonal ‘Q’ matrix, one right multiplies it by a diagonal matrix consisting of the signs of the diagonal of the
‘R’ matrix, guaranteeing that the obtained matrix Q is the unique orthogonal matrix corresponding to the R with positive
diagonal elements. Thus, one obtains Q ∼ H(OD) using the O(D3) QR factorization. There are additional algorithms for
sampling from the Haar distribution over OD that provide speedups while still maintaining cubic complexity [2,27]. In
particular, Stewart [27] achieves a 50% speedup over the QR factorization based algorithm by iteratively pre-multiplying
random Householder matrices of increasing dimensions. We are interested in the fact that, when one only requires
the random rotation and not the matrix itself, Stewart [27]’s algorithm only requires O(D2) floating point operations
to randomly rotate a D-vector. On the one hand, the simplicial sampler multiproposal still requires O(D3) floating point
operations because it must apply this random rotation to the D D-vectors that identify the regular simplex. On the other
hand, one could apply this algorithm in an embarrassingly parallel manner to the D non-zero D-vectors that contribute
to the regular simplex. Furthermore, the entirety of the algorithm relies on matrix–matrix multiplications and should be
extremely fast and scalable on a modern GPU: Li et al. [18] use a (now outdated) Tesla C1060 GPU to score 10,000-fold
speedups over a single-core IJK -algorithm implementation written in C++. Such a fast GPU implementation of Stewart
[27]’s algorithm requires significant engineering that is a contribution in its own right, so we focus on conventional
implementations in the following.

Finally, even for serial implementations, the language of implementation can eclipse theoretical computational
complexity. We find that an R based implementation of Stewart [27]’s algorithm is much slower than the QR factorization
based method implemented in the PRACMA [5] R package. The QR decomposition in R calls the Fortran library LAPACK to
perform the numerical linear algebra for the QR decomposition, and its precompiled and memory efficient implementation
outperform interpreted R.

4.1.2. Other multiproposals
If one precomputes Σ 1/2, the multiproposals (3) and (4) are of complexity O(D2P), with the majority of time spent

multiplying the D×D square-root covarianceΣ 1/2 by a D×P matrix of standard normals. If one adopts the preconditioning
strategy of Haario et al. [12], the complexity changes to O(D3

+ D2P) accounting for a Cholesky decomposition. If one
specifies Σ = σ 2ID, then the complexity drops to O(DP), and the new bottleneck becomes generation of i.i.d. standard
normals.

Just as for the simplicial sampler’s random rotations, one may parallelize the matrix multiplications for these
multiproposals. One may also parallelize the standard normal generations using the parallel pseudo random number
generators of Salmon et al. [25] that TensorFlow uses Abadi et al. [1] to great success.

4.2. Acceptance mechanisms

The simplified acceptance mechanism (6) requires D target density evaluations. These density evaluations are embar-
rassingly parallel, but there are some target distributions for which this kind of parallelization is not necessary. When
one jointly infers a multivariate Gaussian random variable and its covariance matrix using Metropolis-within-Gibbs, one
must invert the updated covariance every time one updates the Gaussian variable. Once one has inverted the covariance
matrix, evaluating the multivariate Gaussian density over D proposals is almost as fast as evaluating the density over a
single proposal. That said, this intuition also applies to Metropolis-within-Gibbs with a simple random walk Metropolis
update: having updated and inverted the covariance matrix, one may perform many Metropolis updates of the Gaussian
random variable at relatively little additional cost. In general, however, careful parallelization should help accelerate the
acceptance step for multiproposal methods in a way unavailable to single-proposal methods. For example, Holbrook [15]
uses a quantum computer to achieve quadratic speedups that reduce the number of target evaluations from O(P) to
O(

√
P).

The simplified acceptance mechanism also avoids potentially costly computations of the P + 1 proposal densities
q(θ∗

p,Θ
∗) required for the general acceptance mechanism (2). For example, the i.i.d. multiproposal (3) requires an

additional O(P2) computational cost to obtain the terms

q(θ∗

p,Θ
∗) =

∏
p′ ̸=p

exp
(

−
1
2
(θ∗

p − θ∗

p′ )TΣ−1(θ∗

p − θ∗

p′ )
)

, p ∈ {1, . . . , P + 1} .

On the other hand, Lemma 1 shows that the centered Gaussian multiproposal (4) leads to a simplified acceptance
mechanism that results in prodigious theoretical speedups thoroughly discussed in Section 3.
9
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Fig. 6. The left two figures present acceptance rates and simplex edge lengths that empirically maximize mean and minimum effective sample sizes
ESS) across target dimensions. For spherical and ill-conditioned targets, we use vanilla and preconditioned simplicial sampler, respectively. The right
igure presents ESS results for a sampler modified to use a lower dimensional simplex.

. Results

In the following, we use (PC-)Simpl, (PC-)RWM and (PC-)MTM to indicate the (preconditioned) simplicial sampler,
andom walk and multiple-try Metropolis algorithms, respectively. Although PC-RWM is better known as the adaptive
etropolis algorithm of Haario et al. [12], we use this notation to clarify comparisons. ESS and ESSs denote effective
ample size and effective sample size per second, respectively. All experiments use the R language [16] and the R package
pracma [5] to produce random rotations, which itself uses the QR decomposition of a matrix with Gaussian entries
(Section 4.1.1). All MTM simulations use D proposals for comparison. Finally, all results herein rely on a conventional
single-core implementation.

5.1. Empirically optimal scaling

5.1.1. Acceptance rates and edge lengths
We first investigate Simpl and PC-Simple performance for Gaussian targets of varying dimensions (4 through 500)

as a function of acceptance rate and simplex edge length. For each dimension, we employ 20 independent MCMC runs
of 10,000 iterations targeting one of 20 acceptance rates uniformly spaced between 0.2 and 0.95 (Section 3.1.3). The
‘ill-conditioned’ Gaussian target has diagonal covariance with elements 1 through D. The left two panels of Fig. 6 plot
the acceptance rates or edge lengths that maximize minimum and mean ESS out of the 20 targeted. For both Simpl and
PC-Simpl, optimal acceptance rates increase with dimensionality until flattening out at around 0.675. For Simpl, optimal
edge lengths quickly flatten out at around 3. For PC-Simpl, optimal edge lengths grow with target dimension.

5.1.2. Number of proposals
In general, Simpl uses a simplex with D + 1 nodes, the maximal number available in D dimensions. The right panel

of Fig. 6 shows ESS results when lower dimensional simplices (with fewer nodes) are used to generate fewer proposals
(P < D). In practice, one may implement such a variation by replacing the initial set of pre-rotated vectors (v1, . . . , vD, 0)
with (v1, . . . , vP , 0), again letting P < D. Algorithmic details otherwise remain the same. We use 100 independent MCMC
runs of 10,000 iterations each to generate minimum and mean ESS across target dimensions. Both measures improve with
greater numbers of proposals. We do not compare ESSs because the additional cost of a simplex node arises from a mere
O
(
D2
)
matrix–vector multiplication, compared to the O

(
D3
)
generation of a random rotation.

5.2. Performance comparisons

5.2.1. Accelerated centered Gaussian multiproposal
Fig. 7 compares the simplicial sampler performance to that of the centered Gaussian sampler (4) using P = D and

P = 2D proposals. The ‘slow’ Gaussian centered multiproposal calculates all P + 1 proposal probabilities q(θ∗

p,Θ
∗),

whereas the ‘fast’ sampler uses the simplified acceptance probabilities (6) following Lemma 1. Samplers target a standard
spherical normal distribution and a 50% acceptance rate for 10,000 iterations. In terms of ESS, doubling the number of
proposals appears to benefit the centered Gaussian sampler, especially in lower dimensions. The fast implementation of
the centered Gaussian sampler already starts to outperform the slow implementations in lower dimensions, and this
relative performance gain only increase with dimensions. Across all dimensions, the ESSs trajectory of the simplicial
sampler remains firmly in between those of the fast and slow centered Gaussian samplers.
10
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Fig. 7. Performance of the simplicial sampler (Simpl) and the ‘P1’ proposal mechanism (4), with both D and 2D proposals and both fast and slow
mplementations (Section 3). All samplers target a standard multivariate Gaussian distribution, run for 10,000 iterations and adapt to a 50% target
cceptance rate.

Fig. 8. Relative improvement of simplicial sampler (Simpl) against random walk Metropolis (RWM) and multiple-try Metropolis (MTM) as measured
by effective sample size (ESS) and ESS per second (ESSs). We apply preconditioning (PC) in the exact same manner to all algorithms.

5.2.2. Gaussian targets
We compare vanilla algorithms on spherical targets of dimensions D = 4, 8, 16, 32, 64, 128, 256 and 512, all with

dentity for covariance matrix, and preconditioned algorithms on targets with ill-conditioned diagonal and full covariance
atrices. Ill-conditioned matrices all have spectra ranging uniformly from 1 to D. RWM and MTM both use optimal scaling

of [10]. For the latter, this results in an asymptotic 30% acceptance rate as D gets large [4]. Simpl adapts to empirically
optimal acceptance rates of Fig. 6. Fig. 8 shows relative ESS and ESSs results from 10 independent MCMC runs of 10,000
iterations each per algorithm. Since ESS is a univariate measure, we report means and minima with respect to target
dimensions.

5.2.3. Bimodal target
In general, Gaussian simplicial sampling (G-Simpl) (Section 3.1.1) and its preconditioned form (PCG-Simpl) perform

slightly worse (10% less ESS) than Simpl and PC-Simpl on unimodal targets, but G-Simpl and PCG-Simpl perform better
on multimodal targets. We compare G-Simpl and PCG-Simpl to RWM and PC-RWM on mixture of Gaussian targets of
11
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Fig. 9. The top figures show stacked traceplots for the first dimension of a 3D Gaussian mixture target. The bottom figures show the number of
intermodal jumps for 100,000 iterations presented over 100 independent MCMC runs. PCG- and G-Simpl are preconditioned and non-preconditioned
Gaussian simplicial samplers compared to the same for random walk Metropolis (RWM).

dimensions 2, 3 and 4. Mixture probabilities are 0.5 − 0.5 and covariances are identity, but modal means are 0 and
5 = (5, . . . , 5). Thus, modes become farther apart with increasing dimension. Fig. 9 shows stacked traceplots and boxplots
for the number of intermodal jumps recorded from 100 independent MCMC runs of 100,000 iterations each.

5.2.4. Gaussian process classification
48 states use a winner-take-all rule when assigning electoral college votes during the U.S. presidential election. We

use a Gaussian process (GP) with logit link [30] to regress binary outcomes (Trump or Clinton) over state center (latitude
and longitude) and population data for the 2016 presidential election. For latent variables θ = (θ1, . . . , θ48), the prior
covariance of θi and θj is

κ(xi, xj) = ξ 2
+ η2 exp

(
−ρ2

∥xi − xj∥2
2

)
+ σ 2δij ,

where xi and xj are their respective predictor vectors. We infer latent variables θ using (PC-)Simple, (PC-)RWM and
(PC-)MTM. We let Simpl algorithms target an acceptance rate of 0.5 following the results of Fig. 6, while we let RWM,
MTM and PC-MTM target 0.234, 0.3 and 0.4. The former value is optimal for RWM [24]. The last two values appear
advantageous in preliminary tests. We infer other parameters using univariate slice samplers [22]. Table 1 shows results
from 100 independent runs of 100,000 iterations each. We initialize all chains to misclassify all states and use a total
misclassification of 10 as rough convergence threshold. While Simple and MTM require multiple target evaluations at
each step, they only must compute the GP inverse covariance once for all such evaluations. These results only establish
effectiveness of the simplicial sampler relative to a few basic samplers and do not establish superiority relative to all
samplers. Gradient-based MCMC methods could likely outperform the simplicial sampler, but we abstain from such
comparisons in order to focus on ‘apples-to-apples’ comparisons among non-gradient methods.

5.3. Visualizing the extra-dimensional simplicial sampler

Because of the diminishing returns (Fig. 6, right) and O(D3) computational cost associated with increasing the number
of simplex vertices, the extra-dimensional simplicial sampler is not practical in the absence of advanced parallelization
techniques. Moreover, the rotated vertices no longer maintain equal distances from each other in the low-dimensional
space over which the target is defined. Fig. 10 shows three successive iterations of the extra-dimensional simplicial
sampler with 1000 proposals targeting a 2D Gaussian distribution. The sampler successfully moves to the high-density
region of the space in these three steps. We observe that rotating and projection the simplex vertices results in proposal
point clouds that look plausibly Gaussian distributed, apparently lacking any geometric structure.
12



A.J. Holbrook Journal of Multivariate Analysis 194 (2023) 105106

r

Table 1
Effective sample sizes (ESS) and ESS per second (ESSs) from 100 independent MCMC runs of 100,000 iterations each for Gaussian process classification
of 48 state election results from 2016 U.S. presidential election. Standard errors of empirical mean estimates accompany in parentheses. Simpl, RWM
and MTM are vanilla simplicial sampler, random walk and multiple-try Metropolis algorithms. PC implies preconditioning. Its and time to err = 10
epresent iterations and seconds to achieve a misclassification total of 10, a rough measure of convergence speed. Winners in blue.
Algorithm Mean ESS θ Min ESS θ Its to err = 10 ESS η2 ESS ξ 2 ESS ρ2 ESS σ 2

Simpl 1571.50 (15.6) 256.27 (6.4) 73.05 (1.8) 671.39 (10.2) 2463.76 (76.6) 3703.05 (50.0) 452.30 (6.7)
RWM 436.34 (2.3) 68.36 (2.3) 276.60 (8.3) 258.63 (5.7) 1407.88 (61.8) 1837.47 (31.3) 134.91 (2.3)
MTM 1195.22 (12.8) 252.13 (7.3) 1928.75 (20.5) 676.75 (12.8) 2332.81 (84.9) 3490.12 (58.41) 366.86 (6.3)
PC-Simpl 1865.18 (14.4) 1200.50 (20.4) 76.39 (2.2) 1312.98 (18.0) 4583.21 (95.5) 4222.10 (50.7) 532.49 (6.5)
PC-RWM 362.99 (4.5) 205.16 (5.3) 284.27 (10.5) 418.99 (10.9) 1381.00 (37.6) 1654.35 (29.8) 125.12 (3.0)
PC-MTM 1256.07 (15.9) 755.42 (16.4) 1873.89 (21.1) 951.97 (15.3) 3840.86 (88.3) 3736.27 (48.0) 272.08 (6.3)

Mean ESSs θ Min ESSs θ Time to err = 10 ESSs η2 ESSs ξ 2 ESSs ρ2 ESSs σ 2

Simpl 5.62 (0.06) 0.92 (0.02) 15.87 (0.98) 2.40 (0.04) 8.81 (0.28) 13.24 (0.18) 1.62 (0.02)
RWM 2.50 (0.02) 0.39 (0.01) 145.41 (9.69) 1.48 (0.03) 8.09 (0.36) 10.55 (0.19) 0.77 (0.01)
MTM 3.85 (0.04) 0.81 (0.02) 11674.88

(252.45)
2.18 (0.04) 7.52 (0.27) 11.25 (0.19) 1.18 (0.02)

PC-Simpl 5.09 (0.13) 3.30 (0.10) 23.99 (1.46) 3.58 (0.10) 12.59 (0.43) 11.53 (0.32) 1.45 (0.04)
PC-RWM 1.44 (0.04) 0.81 (0.03) 268.77 (39.96) 1.65 (0.06) 5.48 (0.22) 6.54 (0.21) 0.49 (0.02)
PC-MTM 3.87 (0.05) 2.33 (0.05) 11540.43

(269.22)
2.93 (0.05) 11.85 (0.28) 11.53 (0.15) 0.84 (0.02)

Fig. 10. Successive iterations of an extra-dimensional simplicial sampler using 1000 proposals to sample a bivariate Gaussian target. For each step,
the yellow dot is the initial position, the black dots are the projected un-rotated simplex vertices, the blue dots are the proposals (or projected
rotated vertices), and the red dots are the accepted proposals. The dashed lines represent simplex edges, and the purple contours represent the
target distribution. Finally, 998 unrotated vertices project down to the same bottom-left black point on the plane.

6. Discussion

We have developed the simplicial sampler, a multivariate extension of the multiproposal mechanism (5) from Tjelme-
land [29], and proven that this extension maintains detailed balance using simplified acceptance probabilities. We have
shown that a variation on this algorithm, the Gaussian simplicial sampler, maintains a unique stationary distribution and
an appropriate law of large numbers. Furthermore, we have proven that the centered Gaussian proposal mechanism (4)
from Tjelmeland [29] enables the same simplified acceptance probability that leads to significant speedups. We have
thoroughly discussed the computational issues that one must consider when implementing these algorithms. Among
others, these considerations include: theoretical computational complexity, hardware, programming language, efficient
use of memory and parallelization. Finally, we have thoroughly compared performance of sequential implementations on
a collection of target distributions. That said, we note that these algorithms are well suited for parallelization enabled by,
e.g., a GPU or a quantum computer [15].

We are interested in two lines of further investigation. First, we have shown that two structurally distinct multiproposal
mechanisms have symmetries that enable simplified acceptance probabilities. Are these the only such mechanisms or are
there others? Can one combine these in ways that preserve the simplified acceptance probabilities? Finally, do analogues
for these methods exist in discrete settings, e.g., for lattice models? Second, we are interested in the quality of convergence
for the broader class of multiproposal MCMC algorithms. Based on simulations, it would not be surprising for geometric
ergodicity to hold for these algorithms. Moreover, one might expect for mixing speeds to improve as the number of
proposals increases.
13
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Fig. A.11. Quantile–quantile plots from 100,000 vanilla simplicial sampler iterations after removing 10,000 iterations as burn-in.
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ppendix. Empirical validation

Fig. A.11 shows quantile–quantile (QQ) plots for the vanilla simplicial sampler for two different 3D Gaussian target
istributions, one of which is spherical and the other of which has diagonal covariance with standard deviations 1, 2
nd 3. The QQ plots demonstrate that the empirical quantiles of the simplicial sampler adhere closely to the quantiles of
espective target distributions.
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