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Brazilis facing a spike in
Covid-19 deaths and an
overwhelmed health care
system. A more contagious
variant of the virus may be
part of the problem.

Dado Galdieri for The New York:
Times



How to Protect Yourself Against
Coronavirus Variants

Upgrading your mask and staying vigilant are more important
than ever.
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A single mutation swept through the Ebola virus population in West Africa
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Some questions

Question 1.

Question 2.

Question 3.

Question 4.

How should we characterize, quantify
and estimate rates of viral spread?

Can we develop a single model that relates
genetic changes to enhanced spatial contagion?

Can we leverage both sequenced and
unsequenced cases?

How might we quantify our uncertainty?



Part 1. Phylogenetic Hawkes process



The challenge

You are given

1. spatiotemporal coordinates (xp, t,) for n =1,..., N viruses;

2. the evolutionary history of a small subset of viruses.

2014-2016 Ebola outbreak viral case data

Viral RNA

Unsequenced

Latitude

W oW
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You are tasked to

1. use this data to discover whether certain branches have
greater contagiousness;

2. quantify your uncertainty with respect to the relevant quantity.



Two paradigms

Traditional Bayesian phylogenetics

Hawkes processes

Observational limit
Biological insight
Genetic sequencing
Spatiotemporal data
Geographic spread

Large-scale transport

N in low thousands
Evolutionary history
Required

Not required

Not modeled

Does not induce bias

N in high tens-of-thousands
None

Not required

Required

Modeled

Induces bias




Hawkes process

A(t)

A

Laub et al. 2015



Spatiotemporal Hawkes process

Inhomogeneous process Self-exciting process
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Variable degrees of contagion

One can tailor the triggering function to change for each
observation (Schoenberg et al., 2019):

A%, () + > gnlx —Xn, t — 1)

th<t

In the following, | specify

and

E(x, t) = 9/%" S 0, et (x —hxn) ‘
th<t
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The challenge

Latitude

2014-2016 Ebola outbreak viral case data
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Brownian phylogenetic diffusion

13



Brownian phylogenetic diffusion

Associate to each tip n of a rooted, M-tipped, binary tree a
Brownian motion z,, centered at its parent node z,,(,). Then

Zn|zpa(n) ~ Norma/(zpa(,,), th 0'2) ,
for t, the branch length of node n to its parent.

Write the joint distribution as

z ~ Normaly (0, 0%V) /
for i3
to
[V]n =ty + tpa(n) + tpa(pa(n))+... / \
[V]n — tn, pa(n) = pa(n’) X &
[V]nn’ = 0 O/W Zhang et al. 2019
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Log link on productivities

Recall our self-exciting rate function:

000) Z _
X, _ 9 w(t— tn)¢< )
th<t

and define

0n =0n(zn) = exp(zn+ Ptn) z, €R, neM
0,=1 n¢ M.
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Phylogenetic Hawkes process
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Part 2. Bayesian inference
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Likelihood based inference and Bayes

Assume data generated according to y, ~ f(yn|@,z,) with prior
distributions @ ~ pg(0) and (z1,...,zn) = Z ~ p,(Z).

Bayes' theorem says:

f(Y‘O) pg(@) _ fZ f(Y|27 H)pZ(Z)dZ p@(e)

p(6lY) =

where £(Y|0,Z) = [IV f(yn|6, z,) is the likelihood function and
f(Y|0) is the marginal likelihood.

FY)  Jo (J2F(YIZ,0)px(Z)dZ) ps(6)dO’
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Random walk Metropolis

Sampling Path of RWM
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RWM requires likelihood evaluations

Our Hawkes process likelihood scales O(N?):

N
£(X, tlpo, T, 00, 8, w, h) = —A(ty) + > log Ap
n=1

N N 10 Dt /] [ xn — %1 000w It ;<1 Xp = X
B n n —w (th—t ;) n n’
[ (e (520 e e, (2520) ) )
n"=1

n= X
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Abstract

The Hawkes process and its extensions effectively model self-excitatory phenomena including earthquakes, viral pandemics,
financial transactions, neural spike trains and the spread of memes through social networks. The usefulness of these stochastic
process models within a host of economic sectors and scientific disciplines is undercut by the processes’ computational
burden: complexity of likelihood evaluations grows quadratically in the number of observations for both the temporal and
spatiotemporal Hawkes processes. We show that, with care, one may parallelize these calculations using both central and
graphics processing unit implementations to achieve over 100-fold speedups over single-core processing. Using a simple
adaptive Metropolis—Hastings scheme, we apply our high-performance computing framework to a Bayesian analysis of big
gunshot data generated in Washington D.C. between the years of 2006 and 2019, thereby extending a past analysis of the same
data from under 10,000 to over 85,000 observations. To encourage widespread use, we provide HPHAWKES, an open-source
R package, and discuss high-level implementation and program design for leveraging aspects of computational hardware that
become necessary in a big data setting.

Keywords Massive parallelization - GPU - SIMD - Spatiotemporal Hawkes process
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Random walk Metropolis

Sampling Path of RWM
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Hamiltonian Monte Carlo

Sampling Path of HMC
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Hamiltonian Monte Carlo

Augment parameter space with auxiliary Gaussian variable p and
construct a Hamiltonian energy function:

H(z,p) = —log(n(z) x ¢(p))

1
x — log(z) + §pr'

New states of the Markov chain are proposed by forward
integrating Hamilton's equations:

s _oH _
dt  op P
dp OH

Numerical simulation induces discretization error, which we correct
with a Metropolis accept-reject step.
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Hamiltonian Monte Carlo

Benefits. HMC computes high-dimensional integrals;
scales to 30,000+ parameters.

Challenges. HMC necessitates repeated computation of
log-likelihood and its gradient (best case O(N)).
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HMC for variable rates?

» The Hawkes likelihood scales O(N?) \/
» But the Hawkes log-likelihood gradient also scales O(N?)

or _(9/\,, n 1 OMyp
90, 00, A\, 06,
n< n/
1 Gow Xy — X
= —w(ty—tn) _ YO0W —w(ty—tn) n n
e )+ 3 5, e e ()
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Parallelization tools

Central processing unit (CPU):
1. Global parallelization: 2 to 60 cores (multi-core)

2. Local parallelization: single instruction multiple data (SIMD)

Graphics processing unit (GPU):
1. Thousands of cores (many-core)
2. Single instruction multiple threads (SIMT)
3. High memory bandwidth (not strictly maths anymore)

27



Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations

+1 4H(F),

+2 4Hl(4),

+m <G5 ),
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Significant speedups

Relative speedup at 25k observations
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Hawkes log-likelihood gradient calculations
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Part 3. Ebola outbreak of 2014-2016
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2014-2016 Ebola virus outbreak in West Africa

Latitude

2014-2016 Ebola outbreak viral case data
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» 1,610 sequenced viruses (1,367 of which have locations data)

» 21,811 unsequenced cases
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Posterior inference

Generate 20 million Markov chain states (~ 6 million samples/day

on Nvidia GV100)

Hierarchical model

Posterior mean

module Model parameter Symbol (95% HPD cred. int.) Unit

Hawkes process Background spatial lengthscale ) 183 (151, 215) km
Self-excitatory temporal lengthscale 1/w 23.3 (22.9, 23.8) days
Self-excitatory spatial lengthscale h 6.69 (6.59, 6.78) km
Normalized self-excitatory weight 6o/ (0o + po) 0.69 (0.63, 0.74) —
Temporal trend coefficient B -0.449 (-0.450,-0.446)

Phylogenetic diffusion Standard deviation o 3.26 (2.93, 3.62) log rate
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Inferred rates of contagion

Latitude
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Posterior mean rates for RNA-sequenced Ebola virus
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Relative rate

95% Credible intervals and posterior means for 1,367 virus—specific rates
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Biologically modulated rates
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Part 4. Much work to do
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Model development

1. Is the linear temporal downtrend sufficient?

2. Variable spatial bandwidths (Park et al., 2019)
parallelizable after precomputing

3. (Everything else in the modern Hawkes toolbox)

4. Going global (probably) requires multivariate approach
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Computational development

1. Overhaul structure of HPHAWKES

2. Faster gradients by approximation (NNs, stochastic gradients,
P3M)

3. DNNs predict trees from RNA

4. Fast multivariate Hawkes inference
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Thank you!
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