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Spatiotemporal data in public health
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Washington D.C. gunshots (2018)
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Event specific probabilities self−excitatory: naive model
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Poisson processes

A counting process {N(t), t > 0} is a homogeneous Poisson point
process with rate λ > 0 if

(i) N(0) = 0;

(ii)
(
N(t4)− N(t3)

)
⊥
(
N(t2)− N(t1)

)
for t1 < t2 ≤ t3 < t4;

(iii)
(
N(t2)− N(t1)

)
∼ Poisson

(
λ(t2 − t1)

)
for t2 > t1.

It is an inhomogeneous Poisson point process with rate λ(t) > 0 if

(i) N(0) = 0;

(ii)
(
N(t4)− N(t3)

)
⊥
(
N(t2)− N(t1)

)
for t1 < t2 ≤ t3 < t4;

(iii)
(
N(t2)− N(t1)

)
∼ Poisson

( ∫ t2

t1
λ(t)dt

)
for t2 > t1.
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Washington D.C. gunshots (2018)
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Event specific probabilities self−excitatory: naive model
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Hawkes process
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λ(t) = µ+ ξ(t) = µ+
∑
tn<t

g(t − tn)
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Spatiotemporal Hawkes process
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λ(x, t) = µ(x) + ξ(x, t) = µ(x) +
∑
tn<t

g(x− xn, t − tn)
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A simple model

We assume

1. an exponential decay triggering function,

2. Gaussian kernel spatial smoothers, and

3. separability in space/time:

ξ(x, t) =
θ0ω

hD

∑
tn<t

e−ω (t−tn)φ

(
x− xn

h

)

µ(x, t) =
µ0

τDx τt

N∑
n=1

φ

(
x− xn
τx

)
· φ
(
t − tn
τt

)
.
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Three inferential challenges

Likelihood based inference encounters (at least) three challenges
that are not independent from one another.

big data × spatial data precision × big model
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Big data
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Washington D.C. gunshots (2018)
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D.C. gunshot data (2006-2018)

An acoustic gunshot location system recorded over 85k gunshots in
Washington D.C. between 2006 and 2018.

Loeffler and Flaxman (2018) used a subset of 9k gunshots in the
paper titled Is gun violence contagious? A spatiotemporal test.

They answered ‘yes’, but did the results hold for a complete data
analysis?
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Likelihood based inference

The likelihood for data (x1, t1), ..., (xN , tN) is

L(Θ) = exp

(
−
∫
RD

∫ tN

0
λ(x, t) dt dx

) N∏
n=1

λ(xn, tn)

:= e−Λ(tN) ·
N∏

n=1

λn .

The log-likelihood involves the term

N∑
n=1

log λn =
N∑

n=1

log

µn +
θ0ω

hD

∑
tn′<tn

e−ω (tn−tn′ )φ

(
xn − xn′

h

)
The gradient w.r.t. Θ also features a double summation.
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Parallelization methods

Central processing unit (CPU):

1. Global parallelization: 2 to hundreds of cores (multi-core)

2. Local parallelization: single instruction multiple data (SIMD)

Graphics processing unit (GPU):

1. Thousands of cores (many-core)

2. Single instruction multiple threads (SIMT)

3. High memory bandwidth
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Significant speedups

Seconds per evaluation Relative speedup

N GPU C++ R GPU C++ R

5000 0.004 0.80 5.02 1255.00 6.27 1
10000 0.01 2.66 18.74 1338.57 7.05 1
20000 0.05 10.10 105.54 1991.32 10.45 1
30000 0.12 21.10 232.51 1970.42 11.02 1
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Postprocessing is expensive too

We can also consider the posterior distribution for the probability
an event comes from self-excitation: ξn/(ξn + µn).
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Spatial data precision
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Washington D.C. gunshots (2018)
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Event specific probabilities self−excitatory: naive model
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Simultaneously inferring gunshot locations

The P.D. rounds the data to the nearest 100 meters. A uniform
prior over the 10k m2 square centered at each observation xn

p(xn) ∝ 1 , xnd − 50 < xnd < xnd + 50 , d = 1, 2

corresponds to using the grouped data likelihood of Heitjan and
Rubin (1991).
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Inferred and observed locations #3

Simultaneously inferring gunshot locations
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Simultaneously inferring gunshot locations
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Good news!
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Breaking the model: decreasing precision
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Coverage distributions across independent simulations

50% CIs 80% CIs 95% CIs

Spatial precision 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1

Fixed locations 0.00 0.19 0.52 0.00 0.42 0.81 0.00 0.68 0.96

Sampled locations 0.53 0.49 0.53 0.84 0.81 0.81 0.98 0.95 0.96
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Breaking the model: variable precision
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Breaking the model: variable precision
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Big model
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2014-2016 Ebola virus outbreak in West Africa
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I 1,610 sequenced viruses (1,367 of which have locations data)

I 21,811 unsequenced cases
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Variable degrees of contagion

One can tailor the triggering function to change for each
observation (Schoenberg et al., 2019):

λ(x, t) = µ(x) +
∑
tn<t

gn(x− xn, t − tn) .

In the following, I specify

ξ(x, t) =
θ0ω

hD

∑
tn<t

θn e
−ω (t−tn)φ

(
x− xn

h

)
.
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Phylogenetic Hawkes process
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Random walk Metropolis
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Hamiltonian Monte Carlo
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Hamiltonian Monte Carlo

Augment parameter space with auxiliary Gaussian variable p and
construct a Hamiltonian energy function:

H(z, p) = − log(π(z)× φ(p))

∝ − log π(z) +
1

2
pTM−1p .

New states of the Markov chain are proposed by forward
integrating Hamilton’s equations:

dz

dt
=
∂H

∂p
= M−1p

dp

dt
= −∂H

∂z
= ∇ log π(z) .

Numerical simulation induces discretization error, which we correct
with a Metropolis accept-reject step.
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Hamiltonian Monte Carlo

Benefits:

I HMC scales to tens-of-thousands of parameters.

Challenges:

I HMC necessitates repeated computation of
log-likelihood and its gradient (best case O(N)).

I Preconditioning required for ill-conditioned posteriors.
May involve additional expensive Hessian evaluations.
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HMC for variable rates?

I The Hawkes likelihood scales O(N2)X
I But the Hawkes log-likelihood gradient also scales O(N2)

∂`

∂θn
= −∂Λn

∂θn
+
∑

tn<tn′

1

λn′

∂λn′n

∂θn

= θ0

(
e−ω (tN−tn) − 1

)
+
∑

tn<tn′

1

λn′

θ0ω

hD
e−ω (tn′−tn)φ

(xn′ − xn
h

)

I And the Hawkes log-likelihood Hessian diagonal also scales
O(N2)!

M−1
mm ≈ − ∂2`

∂θ2
m

=
∑
tm<tn

1

λ2
n

θ2
0ω

2

h2D
e−2ω (tn−tm)φ2

(xn − xm
h

)
.
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Parallel gradient calculations

(
∂`
∂θ1
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1
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∂θ1

)
2

· . . . ·
(
∂`
∂θ1

)
N
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∂θ1

(
∂`
∂θ2

)
1

(
∂`
∂θ2

)
2

· . . . ·
(
∂`
∂θ2

)
N

∂`
∂θ2

· · · ·

...
. . .

...
...

· · ·

(
∂`
∂θM

)
1

· . . . ·
(
∂`
∂θM

)
N

∂`
∂θM
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations
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Parallel gradient calculations

∂`
∂θ1

. . . · ·

∂`
∂θ2

. . . · ·

· · ·

...
. . .

...

· ·

∂`
∂θM

. . . · ·

51



Non−vectorized
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Posterior inference

Generate 100 million Markov chain states (∼ 3.5 million
samples/day on Nvidia GV100) in 1 month.
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Biologically modulated rates
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Big data exacerbates challenges

There are more challenges:

I Flexible models (the irony of model based nonparametrics)

I Boundary issues (censoring and truncation)

I Differential sampling
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Thank you!
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