Three challenges for spatiotemporal Hawkes modeling

Andrew J. Holbrook

UCLA Biostatistics
September 28, 2021

Spatiotemporal data in public health

Washington D.C. gunshots (2018)

2,925 Wildfire ignition sites in Alaska: 2015-2019

Discovery
radius
(log meters)

- 4
- 6
- 8

Global influenza (2000-2012)

Poisson processes

A counting process $\{N(t), t>0\}$ is a homogeneous Poisson point process with rate $\lambda>0$ if
(i) $N(0)=0$;
(ii) $\left(N\left(t_{4}\right)-N\left(t_{3}\right)\right) \perp\left(N\left(t_{2}\right)-N\left(t_{1}\right)\right)$ for $t_{1}<t_{2} \leq t_{3}<t_{4}$;
(iii) $\left(N\left(t_{2}\right)-N\left(t_{1}\right)\right) \sim \operatorname{Poisson}\left(\lambda\left(t_{2}-t_{1}\right)\right)$ for $t_{2}>t_{1}$.

It is an inhomogeneous Poisson point process with rate $\lambda(t)>0$ if
(i) $N(0)=0$;
(ii) $\left(N\left(t_{4}\right)-N\left(t_{3}\right)\right) \perp\left(N\left(t_{2}\right)-N\left(t_{1}\right)\right)$ for $t_{1}<t_{2} \leq t_{3}<t_{4}$;
(iii) $\left(N\left(t_{2}\right)-N\left(t_{1}\right)\right) \sim \operatorname{Poisson}\left(\int_{t_{1}}^{t_{2}} \lambda(t) \mathrm{d} t\right)$ for $t_{2}>t_{1}$.

Washington D.C. gunshots (2018)

2,925 Wildfire ignition sites in Alaska: 2015-2019

Discovery
radius
(log meters)

- 4
- 6
- 8

Global influenza (2000-2012)

Hawkes process

Spatiotemporal Hawkes process

A simple model

We assume

1. an exponential decay triggering function,
2. Gaussian kernel spatial smoothers, and
3. separability in space/time:

$$
\begin{aligned}
& \xi(x, t)=\frac{\theta_{0} \omega}{h^{D}} \sum_{t_{n}<t} e^{-\omega\left(t-t_{n}\right)} \phi\left(\frac{\mathrm{x}-\mathrm{x}_{n}}{h}\right) \\
& \mu(\mathrm{x}, t)=\frac{\mu_{0}}{\tau_{x}^{D} \tau_{t}} \sum_{n=1}^{N} \phi\left(\frac{\mathrm{x}-\mathrm{x}_{n}}{\tau_{x}}\right) \cdot \phi\left(\frac{t-t_{n}}{\tau_{t}}\right) .
\end{aligned}
$$

Three inferential challenges

Likelihood based inference encounters (at least) three challenges that are not independent from one another.
big data \times spatial data precision \times big model

Big data

Washington D.C. gunshots (2018)

D.C. gunshot data (2006-2018)

An acoustic gunshot location system recorded over 85k gunshots in Washington D.C. between 2006 and 2018.

Loeffler and Flaxman (2018) used a subset of 9 k gunshots in the paper titled Is gun violence contagious? A spatiotemporal test.

They answered 'yes', but did the results hold for a complete data analysis?

Likelihood based inference

The likelihood for data $\left(\mathrm{x}_{1}, t_{1}\right), \ldots,\left(\mathrm{x}_{N}, t_{N}\right)$ is

$$
\begin{aligned}
\mathcal{L}(\Theta) & =\exp \left(-\int_{\mathbb{R}^{D}} \int_{0}^{t_{N}} \lambda(x, t) \mathrm{d} t \mathrm{dx}\right) \prod_{n=1}^{N} \lambda\left(\mathrm{x}_{n}, t_{n}\right) \\
& :=e^{-\Lambda\left(t_{N}\right)} \cdot \prod_{n=1}^{N} \lambda_{n}
\end{aligned}
$$

The log-likelihood involves the term

$$
\sum_{n=1}^{N} \log \lambda_{n}=\sum_{n=1}^{N} \log \left(\mu_{n}+\frac{\theta_{0} \omega}{h^{D}} \sum_{t_{n^{\prime}}<t_{n}} e^{-\omega\left(t_{n}-t_{n^{\prime}}\right)} \phi\left(\frac{x_{n}-x_{n^{\prime}}}{h}\right)\right)
$$

The gradient w.r.t. Θ also features a double summation.

Parallelization methods

Central processing unit (CPU):

1. Global parallelization: 2 to hundreds of cores (multi-core)
2. Local parallelization: single instruction multiple data (SIMD)

Graphics processing unit (GPU):

1. Thousands of cores (many-core)
2. Single instruction multiple threads (SIMT)
3. High memory bandwidth

Significant speedups

Significant speedups

	Seconds per evaluation					Relative speedup		
N	GPU	$\mathrm{C}++$	R		GPU	$\mathrm{C}++$	R	
5000	0.004	0.80	5.02		1255.00	6.27	1	
10000	0.01	2.66	18.74		1338.57	7.05	1	
20000	0.05	10.10	105.54		1991.32	10.45	1	
30000	0.12	21.10	232.51		1970.42	11.02	1	

Postprocessing is expensive too

We can also consider the posterior distribution for the probability an event comes from self-excitation: $\xi_{n} /\left(\xi_{n}+\mu_{n}\right)$.

Event date and location

\square	$07-15-07(-76.993,38.834)$
	$07-10-06(-76.979,38.844)$
$11-08-18(-76.969,38.856)$	
0	$01-28-06(-76.984,38.862)$
$\square-28-17(-76.943,38.878)$	
	$05-21-09(-76.971,38.896)$
	$11-22-09(-76.978,38.899)$

Spatial data precision

Washington D.C. gunshots (2018)

2,925 Wildfire ignition sites in Alaska: 2015-2019

Discovery
radius (log meters)

- 4
- 6
- 8

Global influenza (2000-2012)

Simultaneously inferring gunshot locations

The P.D. rounds the data to the nearest 100 meters. A uniform prior over the $10 \mathrm{k} \mathrm{m}^{2}$ square centered at each observation \mathfrak{x}_{n}

$$
p\left(\mathrm{x}_{n}\right) \propto 1, \quad \mathfrak{x}_{n d}-50<\mathrm{x}_{n d}<\mathfrak{x}_{n d}+50, d=1,2
$$

corresponds to using the grouped data likelihood of Heitjan and Rubin (1991).

Simultaneously inferring gunshot locations

Inferred and observed locations \#2

Simultaneously inferring gunshot locations

Good news!

Rate component

		Posterior median (95\% Credible interval)	
Rate component	Parameter	Full model	Naive model
Background	Spatial lengthscale (m)	$98.1(94.0,103.3)$	$106.3(102.1,110.7)$
Self-excitatory	Temporal lengthscale (hrs)	$1763.7(1552.9,2014.8)$	$1891.8(1665.1,2163.6)$
	Spatial lengthscale (m)	$61.4(56.4,67.2)$	$72.3(67.9,77.2)$
	Temporal lengthscale (hrs)	$0.009(0.008,0.010)$	$0.009(0.008,0.009)$
	Normalized weight	$0.11(0.10,0.12)$	$0.11(0.10,0.12)$

Breaking the model: decreasing precision

Coverage distributions across independent simulations

Spatial precision	50\% Cls			80\% Cls			95\% Cls		
	1.0	0.5	0.1	1.0	0.5	0.1	1.0	0.5	0.1
Fixed locations	0.00	0.19	0.52	0.00	0.42	0.81	0.00	0.68	0.96
Sampled locations	0.53	0.49	0.53	0.84	0.81	0.81	0.98	0.95	0.96

Breaking the model: variable precision

2,925 Wildfire ignition sites in Alaska: 2015-2019

Breaking the model: variable precision

Background smooth and 95% credible band

		Posterior median (95\% Credible interval)		
Rate component	Parameter	Full model	Naive model A	Naive model B
Background	Spatial lengthscale (km)	$34.8(32.9,37.6)$	$\mathbf{2 3 . 5}(\mathbf{2 2 . 3}, \mathbf{2 4 . 6})$	$\mathbf{6 3 . 0}(58.7,68.7)$
	Temporal lengthscale (days)	$25.9(23.8,27.9)$	$3244.0(1929.7,5803.5)$	$\mathbf{1 0 . 2}(\mathbf{9 . 4 , \mathbf { 1 1 . 1 })}$
Self-excitatory	Spatial lengthscale (km)	$11.1(10.1,12.0)$	$\mathbf{2 3 . 3}(\mathbf{2 2 . 2 , 2 4 . 4})$	$\mathbf{6 . 5}(5.9,7.2)$
	Temporal lengthscale (days)	$1.1(0.9,1.4)$	$2.2(1.9,2.5)$	$\mathbf{1 0 . 0}(\mathbf{(9 . 2 , 1 0 . 8})$
	Normalized weight	$0.34(0.31,0.37)$	$0.27(0.17,0.36)$	$0.44(0.41,0.47)$

Big model

2014-2016 Ebola virus outbreak in West Africa

- 1,610 sequenced viruses (1,367 of which have locations data)
- 21,811 unsequenced cases

Variable degrees of contagion

One can tailor the triggering function to change for each observation (Schoenberg et al., 2019):

$$
\lambda(\mathrm{x}, t)=\mu(\mathrm{x})+\sum_{t_{n}<t} g_{n}\left(\mathrm{x}-\mathrm{x}_{n}, t-t_{n}\right)
$$

In the following, I specify

$$
\xi(x, t)=\frac{\theta_{0} \omega}{h^{D}} \sum_{t_{n}<t} \theta_{n} e^{-\omega\left(t-t_{n}\right)} \phi\left(\frac{\mathrm{x}-\mathrm{x}_{n}}{h}\right) .
$$

Phylogenetic Hawkes process

Random walk Metropolis

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Augment parameter space with auxiliary Gaussian variable p and construct a Hamiltonian energy function:

$$
\begin{aligned}
H(z, p) & =-\log (\pi(z) \times \phi(p)) \\
& \propto-\log \pi(z)+\frac{1}{2} p^{T} M^{-1} p
\end{aligned}
$$

New states of the Markov chain are proposed by forward integrating Hamilton's equations:

$$
\begin{aligned}
& \frac{\mathrm{dz}}{\mathrm{~d} t}=\frac{\partial H}{\partial \mathrm{p}}=\mathrm{M}^{-1} \mathrm{p} \\
& \frac{\mathrm{dp}}{\mathrm{~d} t}=-\frac{\partial H}{\partial \mathrm{z}}=\nabla \log \pi(\mathrm{z})
\end{aligned}
$$

Numerical simulation induces discretization error, which we correct with a Metropolis accept-reject step.

Hamiltonian Monte Carlo

Benefits:

- HMC scales to tens-of-thousands of parameters.

Challenges:

- HMC necessitates repeated computation of log-likelihood and its gradient (best case $\mathcal{O}(N)$).
- Preconditioning required for ill-conditioned posteriors. May involve additional expensive Hessian evaluations.

HMC for variable rates?

- The Hawkes likelihood scales $\mathcal{O}\left(N^{2}\right)$
- But the Hawkes log-likelihood gradient also scales $\mathcal{O}\left(N^{2}\right)$

$$
\begin{aligned}
\frac{\partial \ell}{\partial \theta_{n}} & =-\frac{\partial \Lambda_{n}}{\partial \theta_{n}}+\sum_{t_{n}<t_{n^{\prime}}} \frac{1}{\lambda_{n^{\prime}}} \frac{\partial \lambda_{n^{\prime} n}}{\partial \theta_{n}} \\
& =\theta_{0}\left(e^{-\omega\left(t_{N}-t_{n}\right)}-1\right)+\sum_{t_{n}<t_{n^{\prime}}} \frac{1}{\lambda_{n^{\prime}}} \frac{\theta_{0} \omega}{h^{D}} e^{-\omega\left(t_{n^{\prime}}-t_{n}\right)} \phi\left(\frac{x_{n^{\prime}}-x_{n}}{h}\right)
\end{aligned}
$$

- And the Hawkes log-likelihood Hessian diagonal also scales $\mathcal{O}\left(N^{2}\right)$!

$$
\mathrm{M}_{m m}^{-1} \approx-\frac{\partial^{2} \ell}{\partial \theta_{m}^{2}}=\sum_{t_{m}<t_{n}} \frac{1}{\lambda_{n}^{2}} \frac{\theta_{0}^{2} \omega^{2}}{h^{2 D}} e^{-2 \omega\left(t_{n}-t_{m}\right)} \phi^{2}\left(\frac{\mathrm{x}_{n}-\mathrm{x}_{m}}{h}\right) .
$$

Parallel gradient calculations

$\left(\frac{\partial \ell}{\partial \theta_{1}}\right)_{1}$	$\left(\frac{\partial \ell}{\partial \theta_{1}}\right)_{2}$	-		-	$\left(\frac{\partial \ell}{\partial \theta_{1}}\right)_{N}$	$\frac{\partial \ell}{\partial \theta_{1}}$
$\left(\frac{\partial \ell}{\partial \theta_{2}}\right)_{1}$	$\left(\frac{\partial \ell}{\partial \theta_{2}}\right)_{2}$.		-	$\left(\frac{\partial \ell}{\partial \theta_{2}}\right)_{N}$	$\frac{\partial \ell}{\partial \theta_{2}}$
.	.				.	.
:					:	:
-					-	.
$\left(\frac{\partial \ell}{\partial \theta_{M}}\right)_{1}$.		\ldots	-	$\left(\frac{\partial \ell}{\partial \theta_{M}}\right)_{N}$	$\frac{\partial \ell}{\partial \theta_{M}}$

Parallel gradient calculations

$\left(\frac{\partial \ell}{\partial \theta_{1}}\right)_{1}$.	.	\ldots	-	-
$\left(\frac{\partial \ell}{\partial \theta_{2}}\right)_{1}$.	-	\ldots	.	.
.	.				.
:			-.		:
-					-
$\left(\frac{\partial \ell}{\partial \theta_{M}}\right)_{1}$	-

Parallel gradient calculations

$+1 \leftrightarrows\left(\frac{\partial \ell}{\partial \theta_{1}}\right)_{2}$.	\ldots	-	-	
$+2 \leftrightarrows\left(\frac{\partial \ell}{\partial \theta_{2}}\right)_{2}$.		-	-	
				.	
		\because.		:	
-				-	
$+M \longleftarrow \\|\left(\frac{\partial \ell}{\partial \theta_{M}}\right)_{2}$		\ldots	-	-	

Parallel gradient calculations

$+_{1}$	$H\left(\frac{\partial \ell}{\partial \theta_{1}}\right)_{3}$	\ldots	-	.
+2	$\dagger\left(\frac{\partial \ell}{\partial \theta_{2}}\right)_{3}$	\ldots	-	-
	-			.
	-	\because		\vdots
	I			-
$+M$	$f\left(\frac{\partial \ell}{\partial \theta}\right)_{3}$	\ldots	-	-

Parallel gradient calculations

Hawkes log-likelihood gradient calculations

Hawkes log-likelihood Hessian calculations

Posterior inference

Generate 100 million Markov chain states (~ 3.5 million samples/day on Nvidia GV100) in 1 month.

Inferred rates of contagion

Inferred rates of contagion

Biologically modulated rates

Posterior mean rate

Big data exacerbates challenges

There are more challenges:

- Flexible models (the irony of model based nonparametrics)
- Boundary issues (censoring and truncation)
- Differential sampling

Acknowledgements

Joint work with

- Marc Suchard (UCLA)
- Xiang Ji (Tulane)

Funded by K-Award Big Data Predictive Phylogenetics with Bayesian Learning.

NH)National Institute of
Allergy and
Infectious Diseases

Thank you!

