A quantum parallel Markov chain Monte Carlo

Andrew J. Holbrook

UCLA Biostatistics

March 11, 2022

The data science perspective

The data science perspective

Hierarchical models for mixed-type data

Hierarchical models for mixed-type data

Bayesian data analysis

Assume data generated according to $y_n \stackrel{\perp}{\sim} f(y_n | \theta, z_n)$ with prior distributions $\theta \sim p_{\theta}(\theta)$ and $(z_1, \ldots, z_N) = Z \sim p_z(Z)$.

Bayes' theorem says:

$$p(\theta|\mathbf{Y}) = \frac{f(\mathbf{Y}|\theta) \, p_{\theta}(\theta)}{f(\mathbf{Y})} = \frac{\int_{\mathbf{Z}} f(\mathbf{Y}|\mathbf{Z}, \theta) p_{z}(\mathbf{Z}) d\mathbf{Z} \, p_{\theta}(\theta)}{\int_{\Theta} \left(\int_{\mathbf{Z}} f(\mathbf{Y}|\mathbf{Z}, \theta) p_{x}(\mathbf{Z}) d\mathbf{Z}\right) \, p_{\theta}(\theta) d\theta} \,,$$

where $f(Y|\theta, Z) = \prod_{n=1}^{N} f(y_n|\theta, z_n)$ is the *likelihood* function and $f(Y|\theta)$ is the marginal likelihood.

Instead of integrating, we use MCMC to generate samples from $p(Z, \theta|Y)$, but this is computationally demanding.

Parallelizing within-chain computations

Parallelizing within-chain computations

I use Hamiltonian (hybrid) Monte Carlo with adaptive precoditioning to generate 100 million Markov chain states (~ 3.5 million samples/day on Nvidia GV100) in 1 month.

Parallelizing between-chain computations

Cortical thickness: 100 parallel chains using No-U-Turn with adaptive mass matrix.

9

Two questions

Neither within- nor between-chain parallelization is a "silver bullet." Here, I am interested in two questions.

- Can we adjust the deeper *algorithmic* structure of MCMC to increase its parallelism?
- How can we leverage parallelism using emerging computational technologies?

Markov chain Monte Carlo

Consider a probability distribution $\pi(d\theta)$ defined on \mathbb{R}^D that admits a probability density $\pi(\theta)$ with respect to the Lebesgue measure, i.e., $\pi(d\theta) =: \pi(\theta)d\theta$.

To generate samples from the target distribution π , we craft a kernel $P(\theta_0, d\theta)$ that satisfies

$$\pi(A) = \int \pi(\mathsf{d} oldsymbol{ heta}_0) P(oldsymbol{ heta}_0, A) \quad \textit{a.s.}$$

for $A \subset \mathbb{R}^D$ for which $\pi(A) > 0$.

Markov chain Monte Carlo

The Metropolis-Hastings algorithm builds such a transition kernel $P(\theta_0, d\theta)$ by:

- 1. generating a proposal θ according to the distribution $Q(\theta_0, d\theta) =: q(\theta_0, \theta) d\theta$; and
- 2. accepting this proposal with probability

$$\pi = 1 \wedge rac{\pi(oldsymbol{ heta}) q(oldsymbol{ heta}, oldsymbol{ heta}_0)}{\pi(oldsymbol{ heta}_0) q(oldsymbol{ heta}_0, oldsymbol{ heta})}$$

This kernel maintains detailed balance and therefore leaves $\pi(d\theta)$ invariant.

The parallel MCMC algorithm (Tjelmeland, 2004) builds such a transition kernel $P(\theta_0, d\theta)$ by:

- 1. generating P proposals $\Theta_{-0} = (\theta_1, \dots, \theta_P)$ from a joint distribution $Q(\theta_0, d\Theta_{-0}) =: q(\theta_0, \Theta_{-0})d\Theta_{-0}$; and
- 2. selecting the next state with probabilities

$$\pi_{p} = \frac{\pi(\theta_{p})q(\theta_{p},\Theta_{-p})}{\sum_{p'=0}^{P}\pi(\theta_{p'})q(\theta_{p'},\Theta_{-p'})}, \quad p = 0,\ldots,P.$$

This kernel *also* maintains detailed balance and therefore leaves $\pi(d\theta)$ invariant.

We can simplify these acceptance probabilities to remove a potentially $O(P^2)$ computational burden.

For example, the proposal mechanism

$$oldsymbol{ heta}_1,\ldots,oldsymbol{ heta}_P\stackrel{\perp}{\sim} {\sf Normal}_D(oldsymbol{ar{ heta}},\Sigma)\,,\quad oldsymbol{ar{ heta}}\sim {\sf Normal}_D(oldsymbol{ heta}_0,\Sigma)$$

results in proposal densities that satisfy

$$q(\theta_0,\Theta_{-0})=q(\theta_1,\Theta_{-1})=\cdots=q(\theta_P,\Theta_{-P}).$$

Thus, these simplified probabilities preserve detailed balance:

$$\pi_{p} = \frac{\pi(\boldsymbol{\theta}_{p})}{\sum_{p'=0}^{P} \pi(\boldsymbol{\theta}_{p'})}, \quad p = 0, \dots, P$$

Pro: fast and flexible on an iteration-by-iteration basis.

Con: each iteration requires O(P) evaluations of the target $\pi(\cdot)$ in

$$\pi_{p} = \frac{\pi(\boldsymbol{\theta}_{p})}{\sum_{p'=0}^{P} \pi(\boldsymbol{\theta}_{p'})}, \quad p = 0, \dots, P.$$

But these evaluations do not depend on each other, so... let's parallelize using a quantum computer!

$$|0\rangle^{\otimes n} |0\rangle \longrightarrow \left(\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle\right) |0\rangle \longrightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle |\pi(x)\rangle ???$$

Not so fast!

A quantum circuit could plausibly evaluate each $\pi(\theta_p)$, for p = 0, 1, ..., P at the same time using quantum parallelism.

But having done this, the best we could hope for is to obtain a single $\pi(\theta_p)$ upon measurement.

Hmmm, maybe we can also use the quantum circuit to sample

$$\hat{\rho} \sim \textit{Discrete}\left(rac{\pi(\theta_0)}{\sum_p \pi(\theta_p)}, rac{\pi(\theta_1)}{\sum_p \pi(\theta_p)}, \dots, rac{\pi(\theta_P)}{\sum_p \pi(\theta_p)}
ight)$$

Maybe? But doesn't the normalization step violate quantum parallelism?

Detour: the Gumbel-max trick

The Gumbel distribution

If $z \sim Gumbel(0, 1)$, then it has density and distribution functions

$$g(z) = \exp\left(-z - \exp(-z)\right)$$
 and $G(z) = \exp\left(-\exp(-z)\right)$.

Gumbel-max trick

We wish to sample from the discrete distribution $\hat{p} \sim Discrete(\pi)$ for $\hat{p} \in \{0, 1, \dots, P\}$ and we only know $\pi^* = c\pi$ for some c > 0.

Define
$$\lambda^* = \log \pi^* = \log \pi + \log c$$
 and suppose $z_0, z_1, \dots, z_P \stackrel{\perp}{\sim} Gumbel(0, 1).$

Finally, define
$$\alpha_{\rho}^* := \lambda_{\rho}^* + z_{\rho}$$
 and $\hat{\rho} = \arg \max_{\rho=0,\dots,P} \alpha_{\rho}^*$.

Then the following holds (Papandreou and Yuille, 2011):

$$\Pr(\hat{p} = p) = \pi_p, \quad p = 0, 1, \dots, P.$$

Data: A vector of unnormalized log-probabilities $\lambda^* = \log \pi + \log c$, for π a discrete probability vector with P+1 elements. **Result:** A single sample $\hat{p} \sim Discrete(\pi)$ satisfying $\hat{p} \in \{0, 1, \dots, P\}.$ for $p \in \{0, 1, ..., P\}$ do $z_{p} \leftarrow Gumbel(0,1);$ $\alpha_{p}^{*} \leftarrow \lambda_{p}^{*} + z_{p};$ end $\hat{p} \leftarrow \operatorname{arg\,max}_{p=0,\ldots,P} \alpha_p^*;$ return \hat{p} .

Algorithm 1: The Gumbel-max trick

End of detour.

Data: Initial Markov chain state
$$\theta^{(0)}$$
; total length of Markov
chain *S*; total number of proposals per iteration *P*.
Result: A Markov chain $\theta^{(1)}, \ldots, \theta^{(S)}$.
for $s \in \{1, \ldots, S\}$ do
 $\left|\begin{array}{c} \theta_0 \leftarrow \theta^{(s-1)}; \\ \bar{\theta} \leftarrow Normal_D(\theta_0, \Sigma); \\ z_0 \leftarrow Gumbel(0, 1); \\ \text{for } p \in \{1, \ldots, P\} \text{ do} \\ \left|\begin{array}{c} \theta_p \leftarrow Normal_D(\bar{\theta}, \Sigma); \\ z_p \leftarrow Gumbel(0, 1); \\ end \\ \hat{p} \leftarrow \arg\min_{p=0,\ldots,P} \left(f(p) := -(z_p + \log \pi(\theta_p))\right); \\ \theta^{(s)} \leftarrow \theta_{\hat{p}}; \\ end \\ return \ \theta^{(1)}, \ldots, \theta^{(S)}. \end{array}\right.$

Algorithm 2: An equivalent parallel MCMC

The main idea of QPMCMC

Use a quantum circuit to obtain

$$\hat{p} = \operatorname*{arg\,min}_{p=0,...,P} \Big(f(p) := - \big(z_p + \log \pi(oldsymbol{ heta}_p) \big) \Big)$$

in time $O(\sqrt{P})$.

We use a Matryoshka doll of established quantum algorithms:

- ► Grover's search algorithm (Grover, 1996) embeds inside ...
- ... the exponential searching algorithm (Boyer et al., 1998) embeds inside ...
- ▶ the Quantum minimization algorithm (Dürr and Høyer, 1996).

Grover's search

Data: An oracle gate \bigcup_f taking $|x\rangle |y\rangle$ to $|x\rangle |y \oplus f(x)\rangle$ for a function $f(x): \{0, \ldots, N-1\} \rightarrow \{0, 1\}$ that satisfies $f(x_0) = 1$ for a single x_0 ; $n + 1 = \log_2(N) + 1$ quantum states initialized to $|0\rangle^{\otimes n} |1\rangle$; an integer $R = \lceil \pi \sqrt{N}/4 \rceil$. **Result:** An *n*-bit binary string x_0 satisfying $f(x_0) = 1$ with error less than 1/N. $|0\rangle^{\otimes n} |1\rangle \longrightarrow \mathsf{H}^{\otimes n+1} |0\rangle^{\otimes n} |1\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle |-\rangle;$ $|h\rangle |-\rangle \longrightarrow ((2|h\rangle \langle h|-1) (1-2|x_0\rangle \langle x_0|))^R |h\rangle |-\rangle \approx |x_0\rangle |-\rangle;$ $|x_0\rangle \longrightarrow x_0$: return x_0 .

Algorithm 3: Quantum search algorithm (Grover, 1996)

Grover's search

Grover's search

What do we do when we don't know M?

Data: An oracle gate U_f taking $|x\rangle |y\rangle$ to $|x\rangle |y \oplus f(x)\rangle$ for a function $f(x) : \{0, ..., N-1\} \rightarrow \{0, 1\}$ with unknown number of solutions; $n = \log_2(N)$.

Result: If a solution exists, an *n*-bit binary string x_0 satisfying $f(x_0) = 1$; if no solution exists, the algorithm runs forever.

 $m \leftarrow 1$: $\gamma \leftarrow 6/5$: success \leftarrow FALSE: while success≠TRUE do $j \leftarrow Uniform\{0, \cdots, m-1\};$ $\begin{array}{l} |0\rangle^{\otimes n} |1\rangle \longrightarrow \mathsf{H}^{\otimes n+1} |0\rangle^{\otimes n} |1\rangle = |h\rangle |-\rangle; \\ |h\rangle |-\rangle \longrightarrow \mathsf{G}^{j} |h\rangle |-\rangle = |x\rangle |-\rangle; \qquad /* \ j \ \text{Grover iterations.} \end{array}$ $|x\rangle \longrightarrow x;$ /* Measure and check. */ if f(x) = 1 then $x_0 \leftarrow x;$ success $\leftarrow \text{TRUE};$ else $m \leftarrow \min\left(\gamma m, \sqrt{N}\right);$ /* If fail, increase m. */ end

end

return x₀.

Algorithm 4: Exponential searching algorithm (Boyer et al., 1998)

Exponential searching algorithm

When $M \ll N$, the expected total number of Grover iterations is bounded above by $\frac{9}{4}\sqrt{\frac{N}{M}}$. Horizontal lines at $\frac{9}{4}\sqrt{N}$.

```
Data: A quantum sub-routine capable of evaluating a function f(\cdot) over
        \{0, \ldots, N-1\} with unique integer values; a maximum error
        tolerance \epsilon \in (0, 1); expected total time to success
        m_0 = \frac{45}{4}\sqrt{N} + \frac{7}{10}\log_2(N).
Result: A \log_2(N)-bit binary string x_0 satisfying f(x_0) = \min f with
          probability greater than 1 - \epsilon.
s \leftarrow 0:
x_0 \leftarrow Uniform\{0, \ldots, N-1\};
while s < m_0/\epsilon do
    Prepare initial state \frac{1}{\sqrt{N}}\sum_{x} |x\rangle |x_0\rangle;
   Mark all items x satisfying f(x) < f(x_0);
   s \leftarrow s + \log_2(N);
   Apply quantum exponential searching algorithm; /* / time steps */
   s \leftarrow s + I:
   Obtain x' by measuring first register;
   if f(x') < f(x_0) then
| x_0 \leftarrow x'
    end
end
```

return x₀.

Algorithm 5: Quantum minimization algorithm (Dürr and Høyer, 1996)

Quantum minimization and warm-starting

Proposition

Suppose that the quantum minimization algorithm begins with a threshold F_0 such that $f(x) < F_0$ for only K - 1 items. Then the expected total number of time steps to find the minimizer is bounded above by

$$m_0^{\mathcal{K}} = \left(\frac{5}{4} - \frac{1}{\sqrt{\mathcal{K} - 1}}\right) 9\sqrt{\mathcal{N}} + \frac{7}{10}\log_2(\mathcal{K})\log_2(\mathcal{N}),$$

and so the following rule relates the warm-started upper bound to the generic upper bound:

$$m_0^K = m_0 - 9\sqrt{\frac{N}{K-1}} + \frac{7}{10}\log_2\left(\frac{K}{N}\right)\log_2(N).$$

Quantum minimization and warm-starting

Quantum minimization algorithm

Using the same early stopping threshold within the exponential search sub-routine, we observe a failure rate less than 1%.

Data: Initial Markov chain state $\theta^{(0)}$; total length of Markov chain S; total number of proposals per iteration P. **Result:** A Markov chain $\theta^{(1)}, \ldots, \theta^{(S)}$. for $s \in \{1, ..., S\}$ do $\theta_0 \leftarrow \theta^{(s-1)}$: $\bar{\boldsymbol{\theta}} \leftarrow Normal_D(\boldsymbol{\theta}_0, \boldsymbol{\Sigma});$ $z_0 \leftarrow Gumbel(0, 1);$ for $p \in \{1, ..., P\}$ do $\theta_{p} \leftarrow Normal_{D}(\bar{\theta}, \Sigma);$ $z_{p} \leftarrow Gumbel(0, 1);$ end $\hat{p} \leftarrow \operatorname{arg\,min}_{p=0,\dots,P} \left(f(p) := -(z_p + \log \pi(\theta_p)) \right);$ /* Quantum minimization starting at 0. $heta^{(s)} \leftarrow heta_{\hat{a}};$ */ end return $\theta^{(1)},\ldots,\theta^{(S)}$

Algorithm 6: Quantum parallel MCMC

QPMCMC

We use 7% of the conventional 2,000 target evaluations. Only 1 in 200 quantum minimizations fail.

QPMCMC

QQ plot for 100D Gaussian target

QPMCMC

Proposals	MCMC iterations	Target evaluations	Speedup	Efficiency gain
1,000	249,398 (200,998, 311,998)	24,988,963 (20,149,132, 31,265,011)	9.98 (9.98, 9.98)	1
5,000	14,398 (12,998, 16,998)	3,314,560 (2,989,418, 3,916,281)	21.72 (21.70, 21.74)	7.58 (6.25, 9.71)
10,000	5,998 (4,998, 6,998)	1,993,484 (1,662,592, 2,330,842)	30 (29.96, 30.26)	12.87 (8.64, 18.80)

Final thoughts

- Forget MCMC: just use quantum minimization and Gumbel-max to sample directly from the, e.g., Ising model.
- Don't forget MCMC: symmetric proposals can be made using discrete metrics for the, e.g., Ising model.
- Quantum minimization is "old" technology. Can we do better?

Thank you!