Excerpts from Geometric Bayes

Andrew J. Holbrook

Department of Statistics University of California, Irvine

Department of Human Genetics University of California, Los Angeles

JSM 2019

This is Super Chris.

Super Chris is handsome.

Super Chris is very smart.

Neural spike trains

Local field potentials

Super Chris gets it right!

Well done, Super Chris!

Local field potentials

Spectral density and coherence

Auto-covariance matrix at lag ℓ :

$$\Gamma_{\ell} = \mathsf{Cov}(y(t), y(t-\ell)) = \mathsf{E}((y(t)-\mu)(y(t-\ell)-\mu)^{T})$$

Power spectral density matrix at frequency ω :

$$\Sigma(\omega) = \sum_{\ell=-\infty}^{\infty} \mathsf{\Gamma}_{\ell} \, \exp(-i2\pi\omega\ell)$$

The squared coherence matrix at frequency ω :

$$\rho_{ij}^2(\omega) = \frac{|\Sigma_{ij}(\omega)|^2}{\Sigma_{ii}(\omega)\Sigma_{jj}(\omega)}$$

The Whittle likelihood

For
$$\omega_k = \frac{k}{T}$$
 and $k = -(\frac{T}{2} - 1), \dots, \frac{T}{2}$, define
 $Y(\omega_k) = \frac{1}{\sqrt{T}} \sum_{t=1}^T y(t) \exp(-i2\pi\omega_k t)$.

In many situations, we have

$$Y(\omega_k) \stackrel{ind}{\sim} CN_d(0, \Sigma(\omega_k)),$$

and it is common to assume

$$Y(\omega_k) \stackrel{\textit{iid}}{\sim} \mathsf{CN}_d(0, \Sigma_lpha)$$

for α a band of frequencies.

Convenient and inconvenient priors

Prior	Symmetric	Hermitian
Wishart	$ \Sigma ^{(n-d-1)/2} \exp\left(-\mathrm{tr}\{\Psi^{-1}\Sigma\}/2 ight)$	$ \Sigma ^{n-d} \exp\left(-\mathrm{tr}\{\Psi^{-1}\Sigma\} ight)$
inverse-Wishart	$ \Sigma ^{-(n+d+1)/2} \exp(-tr{\{\Psi\Sigma^{-1}\}/2})$	$ \Sigma ^{-(n+d)} \exp\left(-\operatorname{tr}\{\Psi\Sigma^{-1}\}\right)$
uniform	1	1
Jeffreys	$ \Sigma ^{-(d+1)/2}$	$ \Sigma ^{-d}$
reference	$\left(\Sigma \prod_{i < j} (d_i - d_j) ight)^{-1}$	$\left(\Sigma \prod_{i < j} (d_i - d_j)^2 \right)^{-1}$

Table 1: Priors for postive definite matrices

Inference technique should:

- give freedom to choose
- not require complicated parameterizations
- be exact

Pick your parameterization

Non-Euclidean Hamiltonian Monte Carlo

Byrne and Girolami (2013) extend HMC to Riemannian manifolds using *isometric embeddings*.

Gaussian velocities are generated on tangent space at current position.

Geodesics traverse the state space.

Cartan's canonical metric

One may endow the smooth manifold of positive definite Hermitian matrices with the Riemannian metric

$$g_{\Sigma}(V_1, V_2) = \operatorname{tr}\left(\Sigma^{-1}V_1\Sigma^{-1}V_2\right) \,,$$

for V_1 and V_2 any Hermitian matrices. Under this metric, the geodesic equations are

$$\begin{split} \Sigma(t) &= \Sigma(0)^{1/2} \exp\left(t \, \Sigma(0)^{-1/2} \, V(0) \Sigma(0)^{-1/2}\right) \Sigma(0)^{1/2} \\ V(t) &= V(0) \Sigma(0)^{-1/2} \exp\left(t \Sigma(0)^{-1/2} \, V(0) \Sigma(0)^{-1/2}\right) \Sigma(0)^{1/2} \,, \end{split}$$

but the *isometric embedding* is unknown.

Algorithm 1 Geodesic Lagrangian Monte Carlo

Let $q = q^{(k)}$ be the *k*th state of the Markov chain. The next sample is generated according to the following procedure.

(a) Generate proposal state q^* :

1:
$$v \sim N(0, G^{-1}(q))$$

2: $e \leftarrow -\log \pi(q) - \frac{1}{2}\log|G(q)| + \frac{1}{2}v^{\mathsf{T}}\overline{G(q)}v$
3: $q^* \leftarrow q$
4: for $\tau = 1, ..., T$ do
5: $v \leftarrow v + \frac{e}{2}G(q^*)^{-1}\nabla_q \left(\log \pi(q^*) + \frac{1}{2}\log|G(q^*)|\right)$
6: Progress (q^*, v) along the geodesic flow for time ϵ .
7: $v \leftarrow v + \frac{e}{2}G(q^*)^{-1}\nabla_q \left(\log \pi(q^*) + \frac{1}{2}\log|G(q^*)|\right)$
8: end for
9: $e^* \leftarrow -\log \pi(q^*) - \frac{1}{2}\log|G(q^*)| + \frac{1}{2}v^{\mathsf{T}}G(q^*)v$
b) Accept proposal with probability min{1, exp(e)/exp(e^*)}:
1: $u \sim U(0, 1)$
2: if $u < \exp(e - e^*)$ then
3: $q \leftarrow q^*$

4: end if

(c) Assign value q to $q^{(k+1)}$, the (k + 1)th state of the Markov chain.

Simulated processes

Local field potentials

Prior - Inverse-wishart - Reference

Local field potentials

Neural spike trains

sDDR: highly structured inference LFP module:

$$\begin{split} \tilde{x}_i^L &= U^L \Lambda^L z_i^L + \mu^L + \epsilon_i^L, \\ \epsilon_i^L &\sim N_d(0, \sigma_L^2 I), \qquad \mu^L \sim N_d(0, \tau_L^2 I), \\ z_i^L &\sim N_k(0, I), \qquad \sigma_L^2, \tau_L^2, \lambda_j^L \sim \mathsf{Cauchy}^+(0, 5), \\ j &= 1, \dots, k, \quad \lambda_j^L > \lambda_{j'}^L, \quad j > j'. \end{split}$$

Neural spikes module:

$$\begin{split} x_i^S &\sim \mathsf{Pois}_{\otimes} \big(\exp\{U^S \Lambda^S \, z_i^S + \mu^S\} \big), \\ \mu^S &\sim N_d(0, \tau_S^2 \, I), \qquad z_i^S &\sim N_k(0, I) \\ \tau_S^2, \lambda_j^S &\sim \mathsf{Cauchy}^+(0, 5), \\ j &= 1, \dots, k, \quad \lambda_j^S > \lambda_{j'}^S, \quad j > j'. \end{split}$$

Sequential classification module:

$$y_i \sim \text{Bernoulli}(\text{logit}^{-1}(\beta + \beta_S^T z_i^S + \beta_L^T z_i^L)) + \beta \sim N(0, 10^2), \quad \beta_S, \beta_L \sim N_k(0, 10^2 I) .$$

Two loading matrix models

$$L_{d\times k} = U_{d\times k} \Lambda_{k\times k} = U_{d\times k} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_k \end{pmatrix}$$

Model 1:

$$U \sim Uni_{\mathcal{H}} \left(\mathcal{O}_{d \times k} \right) \implies U^T U = I_k$$

Model 2:

$$U_{ij} \stackrel{iid}{\sim} N(0,1) \implies E_{p(U)} (U^T U) \propto I_k$$

The Information bottleneck

Predicting sequence status

Table 2: 10-Fold cross-validation results

Method		0-1 Error	
	LFP	Spikes	Joint
sDDR, Gaussian	0.110	0.064	0.060
sDDR, Stiefel	0.106	0.069	0.064
Logistic lasso	0.106	0.092	0.087
Random forest	0.106	0.096	0.106
PLS-DA	0.106	0.073	0.096

Predicting sequence status

Table 2: 10-Fold cross-validation results

Method	0-1 Error		
	LFP	Spikes	Joint
sDDR, Gaussian	0.110	0.064	0.060
sDDR, Stiefel	0.106	0.069	0.064
Logistic lasso	0.106	0.092	0.087
Random forest	0.106	0.096	0.106
PLS-DA	0.106	0.073	0.096

Takeaways

- Theory *directly* contributes to applied science.
- Differential geometry enables categorical/basic improvements in Bayesian inference.
- Geometric components seamlessly integrate into advanced/hierarchical models.
- Much work to do in Bayesian spectral analysis.

There's more!

- details
- information geometry and nonparametric density estimation
- $\nabla \mathsf{Det}(A) = A^+ \mathsf{Det}(A)$
- geodesic Monte Carlo with non-trivial mass matrix
- inference on infinite dimensional manifolds

Many thanks to ...

- my thesis advisor, Prof. Shahbaba; my non-thesis advisor, Prof. Gillen; my mentor, Prof. Ombao;
- Alexander Vandenberg-Rodes; Shiwei Lan; Jeffrey Streets; Norbert Fortin;
- the Savage Award committee;
- Prof. Daniels;
- and \dots

Thank you, Super Chris.