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At the Intersection of Big Data and Big Model
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A Unified Model for Viral Spread

» Holbrook, Ji and Suchard (2022). From viral evolution to
spatial contagion: a biologically modulated Hawkes model,
Bioinformatics.

» Virus-specific latent variables connect a spatiotemporal
Hawkes process model with a phylogenetic diffusion prior.

» The number of latent variables is O(N), for N the number of
observed viruses.

» Hawkes likelihood computations require O(N?) floating-point
operations.
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A Unified Model of Viral Spread

Proposal #1: use parallel computing to accelerate MH bottleneck,
i.e., likelihood computations.
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What about high dimensionality?



A Unified Model of Viral Spread

Proposal #2: also use parallel computing to accelerate adaptive

HMC bottlenecks, i.e., log-likelihood gradient/Hessian.
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Hawkes log-likelihood gradient calculations
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Hawkes log-likelihood Hessian calculations
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What about bad geometry (non-linearity, multimodality)?



A Unified Model of Viral Spread

Proposal #3: to analyze over 23k Ebola cases (2014-2016 West
Africa), run the chain for 30 days using Nvidia GV100 GPU.

Diagnostic histogram and quartiles

An example of multiscale multimodality
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Inexhaustive Taxonomy of Parallel MCMC

» Between-chain parallelization: multiple independent chains;
» Within-chain parallelization:

» Model-dependent parallelization: likelihood computations;
» Model-independent parallelization:

» Parallel tempering;

» Multiple-try metropolis;

» Multiple proposals, single acceptance step.



MCMC with Multiple Proposals
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A Complicated Landscape

Interesting gap between 1977 and 2003

Literature is interdisciplinary

Non-negligible preprint count

A large amount of redundant, contradictory terminology

vVvyyvyyVvyy

Much of literature focuses on weighted averages (and calls
this Rao-Blackwellization)

v

“Parallelizable” is often conflated with “Parallelized”

v

| have probably not included your work
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Efficient Multiproposal Structures
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Multiproposal MCMC

A parallel MCMC algorithm builds a transition kernel P(6q,d@) by:

1. generating P proposals @_¢ = (01,...,6p) from a joint
distribution Q(8¢,d®_g) =: q(00,O_0)dO_o; and

2. selecting the next state with probabilities

m(05)q(0,,0_p)
Z,Ij’:o m(0p)q(0p, 0 _p)

p= , pe{0,1,...,P}.

This kernel maintains detailed balance and leaves 7(d@) invariant.

12



Multiproposal MCMC

PRO: using large numbers of proposals P helps overcome
multimodality and non-linearity.

CON: requires O(P) target evaluations 7(68,) and proposal
evaluations q(6,,©_,), each of the latter being O(P).

13



Simplified Acceptance Probabilities

Can we somehow enforce q(6,,0_,) = q(0,,0_,),
Vp,p' € {0,1,..., P}, to obtain simplified acceptance probabilities
_ m(6p)
T=—p
Zp’zo 7T(GPI)

Such structured multiproposals would result in O(P?) time savings
and simpler implementation. | consider two such approaches in

, pef{0,1,...,P}.

» Holbrook (2023a). Generating MCMC proposals by randomly
rotating the regular simplex, Journal of Multivariate Analysis.
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The Simplicial Sampler (elegant and expensive)

Let state space be RP and vy, ...,vp € RP satisfy

|\vd—vd/||2:)\>0, d#dIG{l,...,D}.

Then the simplicial sampler follows the following steps:

1.

Sample D x D orthonormal matrix Q according to Haar
distribution Q ~ H(Op).

Rotate and translate the simplicial vertices

(O,Vl,. . .,VD) — Q(O,Vl7 . ,VD) +0(5) =: (0, 01,.. .,BD).

Draw a single sample 84 from (8o, ..., 0p) with probability
proportional to 7(6y).

Set 5t =g,

15



The Simplicial Sampler (elegant and expensive)
v3 y 63
N

9(s) 9(s)

V2

01

A simplicial sampling multiproposal for D = 3. Proposal set is
obtained by rotating three simplex vertices about current state 00,

PRO: saves O(D?) time for D evaluations g(84,© _4).
CON: P = D and cost is O(D3).
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Tjelmeland Correction (a free lunch)

Tjelmeland (2004) suggests the two-step multiproposal
1. 6 ~ Np(8©®) x);

2. 01,...,00 2 Np(8,X).

Why? No satisfactory explanation. But it turns out that this
structure leads to the desired equality (Holbrook 2023a):

q(0,,0_,) =q(0,,0_,),Vp,p' €{0,1,...,P}.
As promised, the resulting acceptance probabilities are:

77(0/3)
z,’:’:o 7T(910’)

Only the O(P) target evaluations remain in our way.

Tp =

, pe{0,1,...,P}.

17



Parallelizing Parallel MCMC
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Parallelizing Target Evaluations: CPU vs GPU

Gaussian target 2D Mixture of many Gaussians target
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» Glatt-Holtz et al. (2022). Parallel MCMC algorithms:
theoretical foundations, algorithm design, case studies,
Preprint.
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The Gumbel Distribution

Standard Gumbel distribution density

0.3

density
o
N

0.14

0.01

If z ~ Gumbel(0, 1), then it has density and distribution functions

g(z) =exp(—z—exp(—2z)) and G(z) =exp(—exp(—2z)).
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Gumbel-Max Trick

We wish to sample from the discrete distribution p ~ Discrete()
for p € {0,1,..., P} and we only know 7* = ¢ for some ¢ > 0.

Define A* = log w* = log w + log ¢ and suppose
20,21, .-+, 2P i Gumbel(0,1).

Finally, define aj, := A, + 2, and p = argmax,—o . p .

* .
p-

Then the following holds (Papandreou and VYuille, 2011):

Pr(p=p)=mp, p=0,1,...,P.
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Data: Initial Markov chain state 8(?); total length of Markov
chain S; total number of proposals per iteration P.
Result: A Markov chain 0(1), . .,0(5).
forse{1,...,5} do
0o <+ 0671,
6 < Normalp (6o, X);
zp < Gumbel(0,1);
forpe {1,...,P} do
6, < Normalp(0,X);
zp < Gumbel(0, 1);
end
p < argmin,_o _p (f(P) = _(Zp + log 7T(gp)))?
0 «— 0;;
end
return 09 .., 005
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Quantum Parallel MCMC

Use a quantum circuit to obtain

b= ?Lgorfjig (f(p) = —(zp + |0g7r(9p)))

Quantum Minimization (Durr and Hoyer, 1996)

Exponential Searching Algorithm (Boyer et al.,1998)

Grover Search (Grover, 1996)

» Holbrook (2023b). A quantum parallel Markov chain Monte
Carlo, JCGS.
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100

Mixture of many Gaussians: first 11 modes of 1000

QPMCMC: Racing to an ESS of 100

Mixture of many Gaussians: all 1000 modes
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Ising Model Target

Consider the Ising-type lattice model over configurations
0 = (61, ...,0p) consisting of D individual spins 04 € {—1,1}

m(6p) ocexp | p Z 0a0qr
(d,d")e&

No need for Tjelmeland corrections when we use uniform proposals
on {—1,1}P. The following results are based on single-flip
proposals (although not necessary).
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Ising Model Target

Unnormalized log—probabilities

Convergence for an Ising model on a 500-by-500 lattice

5e+054

4e+05

3e+05+

2e+05

1le+054

0e+00

Proposals  Target evaluations  Speedup
4 6.12e+07 0.65
8 7.69e+07 1.04
16 1.16e+08 1.37
32 1.63e+08 1.96
64 2.58e+08 2.48
128 3.82e+08 3.35
256 5.81e+08 4.41
512 8.58e+08 5.97
1024 1.29e+09 7.94
2048 1.90e+09 10.80
. . . .
0.0e+00 2.5e+06 5.0e+06 7.5e+06

MCMC iterations

Parallel
MCMC
proposals

— 2048

— 1024
512
256
128
64
32
16

26



Bayesian Image Segmentation

Following Hurn (1997), y, are intensity values associated with
individual pixels.

ind
Val(pe, 02, 04) = Normal(pe, 02), yq € [0,255],
04=0¢, defl,....D},

. X Uniform(0,255), (e {-1,1},

1 11
P Gamma <2, 2>

0 ~ Ising(p), p=12.
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Bayesian Image Segmentation

Segmenting a 4,076-by-4,076 intensity map. Using 1,024
proposals, QPMCMC requires less than 10% the evaluations
required by a conventional computer.

Intensities from Sagittarius A* image Pixelwise posterior mode
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Future Directions
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Theoretical Challenges

Glatt-Holtz et al. (2022) develop foundations for multiproposal
MCMC, incorporating:

» general state space representation (Tierney, 1998);

» involutions on extended phase spaces (Nekludov et al., 2020;

Glatt-Holtz et al., 2020; Andreiu et al., 2020);
» proposal cloud resampling;
» Metropolis-Hastings and Barker/Boltzmann acceptances.
We still lack:
» Optimal tuning guidances (D,P);
» Error bounds for biased kernels:

» nonreversible multiproposal MCMC.
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Bizarre Benefits of Bias

Schwedes and Calderhead (2021) estimate the relative reduction in
MSE for Monte Carlo estimators as a function of «, where oo x P
is the number of proposal cloud resampling iterations.
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This is using the naive multiproposal
01,...,0p " Np(0,X).

with full acceptance probabilities 7, oc m(0,) [1,.2, 9(6p, 0,).-
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Bizarre Benefits of Bias

Starting correct algorithm at origin

Starting correct algorithm away from origin
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Tjelmeland Correction Reduces Communication

If models are multimodal and parallelizable:
» Bayesian inversion of nonlinear PDEs;

» Hawkes processes (temporal, spatiotemporal, multivariate).
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Many Proposals vs Many Chains
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Multivariate Gaussian Targets

Mean absolute error
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Massively Multimodal Targets

Relative error: 1st moment
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