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My Personal Path to QPMCMC
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A Unified Model for Viral Spread

» Holbrook, Ji and Suchard (2022). From viral evolution to
spatial contagion: a biologically modulated Hawkes model,
Bioinformatics.

» Virus-specific latent variables connect a spatiotemporal
Hawkes process model with a phylogenetic diffusion prior.

» The number of latent variables is O(N), for N the number of
observed viruses.

» Hawkes likelihood computations require O(N?) floating-point
operations.
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A Unified Model of Viral Spread

Proposal #1: use parallel computing to accelerate MH bottleneck,
i.e., likelihood computations.
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What about high dimensionality?



A Unified Model of Viral Spread

Proposal #2: also use parallel computing to accelerate adaptive

HMC bottlenecks, i.e., log-likelihood gradient/Hessian.
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Hawkes log-likelihood gradient calculations
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What about bad geometry (non-linearity, multimodality)?



A Unified Model of Viral Spread

Proposal #3: to analyze over 23k Ebola cases (2014-2016 West
Africa), run the chain for 30 days using Nvidia GV100 GPU.

Diagnostic histogram and quartiles

An example of multiscale multimodality
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Some Questions

» Can we parallelize the general structure of MCMC to
overcome inferential challenges?

» What other computational tools might accelerate Bayesian
inference?

» Quantum computing achieves remarkable speedups for a
limited set of problems, but can it help Bayesians?

» What can quantum computing do for biomedicine?



Efficient Multiproposal Structures



Multiproposal MCMC

A multiproposal MCMC algorithm builds a transition kernel
P(80,d0) by:

1. generating P proposals @_¢ = (01,...,6p) from a joint
distribution Q(6¢,d®_g) =: (69, @ _¢)dO_¢; and

2. selecting the next state with probabilities

m(05)q(0p,0_p)
Z;,:’:o m(0p)q(0p,© )

p= , pef{0,1,...,P}.

This kernel maintains detailed balance and leaves 7(d@) invariant.



Multiproposal MCMC

PRO: using large numbers of proposals P helps overcome
multimodality and non-linearity.

CON: requires O(P) target evaluations 7(68,) and proposal
evaluations q(6,,©_,), each of the latter being O(P).
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Simplified Acceptance Probabilities

Can we somehow enforce q(6,,0_,) = q(0,,0_,),
Vp,p' € {0,1,..., P}, to obtain simplified acceptance probabilities
_ m(6p)
T=—p
Zp’zo 7T(GPI)

Such structured multiproposals would result in O(P?) time savings
and simpler implementation. | consider two such approaches in

, pef{0,1,...,P}.

» Holbrook (2023a). Generating MCMC proposals by randomly
rotating the regular simplex, Journal of Multivariate Analysis.
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Tjelmeland Correction (a free lunch)

Tjelmeland (2004) suggests the two-step multiproposal
1. 6 ~ Np(8©®) x);

2. 01,...,00 2 Np(8,X).

Why? No satisfactory explanation. But it turns out that this
structure leads to the desired equality (Holbrook 2023a):

q(0,,0_,) =q(0,,0_,),Vp,p' €{0,1,...,P}.
As promised, the resulting acceptance probabilities are:

77(0/3)
z,’:’:o 7T(910’)

Only the O(P) target evaluations remain in our way.

Tp =

, pe{0,1,...,P}.
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A Quantum Parallel MCMC
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The Gumbel Distribution

Standard Gumbel distribution density
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If z ~ Gumbel(0, 1), then it has density and distribution functions

g(z) =exp(—z—exp(—2z)) and G(z) =exp(—exp(—2z)).
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Gumbel-Max Trick

We wish to sample from the discrete distribution p ~ Discrete()
for p € {0,1,..., P} and we only know 7* = ¢ for some ¢ > 0.

Define A* = log w* = log w + log ¢ and suppose
20,21, .-+, 2P i Gumbel(0,1).

Finally, define aj, := A, + 2, and p = argmax,—o . p .

* .
p-

Then the following holds (Papandreou and VYuille, 2011):

Pr(p=p)=mp, p=0,1,...,P.
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Data: Initial Markov chain state 8(?); total length of Markov
chain S; total number of proposals per iteration P.
Result: A Markov chain 0(1), . .,0(5).
forse{1,...,5} do
0o <+ 0671,
6 < Normalp (6o, X);
zp < Gumbel(0,1);
forpe {1,...,P} do
6, < Normalp(0,X);
zp < Gumbel(0, 1);
end
p < argmin,_o _p (f(P) = _(Zp + log 7T(gp)))?
0 «— 0;;
end
return 09 .., 005
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Quantum Parallel MCMC
Use a quantum circuit with O(v/P) depth to obtain

p= ir:g(;)r.’rjilr; (f(p) = —(zp + log 7T(9p))> .

Quantum Minimization (Durr and Hoyer, 1996)

Exponential Searching Algorithm (Boyer et al.,1998)

Grover Search (Grover, 1996)

» Holbrook (2023b). A quantum parallel Markov chain Monte
Carlo, JCGS.
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100

Mixture of many Gaussians: first 11 modes of 1000

QPMCMC: Racing to an ESS of 100

Mixture of many Gaussians: all 1000 modes
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Ising Model Target

Consider the Ising-type lattice model over configurations
0 = (01,...,0p) consisting of D individual spins 04 € {—1,1}

m(0lp) xcexp [ p D b
(d,d")e&

Convergence for an Ising model on a 500-by-500 lattice
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Bayesian Image Segmentation

Following Hurn (1997), y, are intensity values associated with
individual pixels.

ind
Val(pe, 02, 04) = Normal(pe, 02), yq € [0,255],
04=0¢, defl,....D},

. X Uniform(0,255), (e {-1,1},

1 11
P Gamma <2, 2>

0 ~ Ising(p), p=12.

20



Bayesian Image Segmentation

Segmenting a 4,076-by-4,076 intensity map. Using 1,024
proposals, QPMCMC requires less than 10% the evaluations
required by a conventional computer.

Intensities from Sagittarius A* image Pixelwise posterior mode
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Four Problems

We achieve a quadratic speedup over conventional computers, but:

1. no explicit circuit (depth of Grover’s oracle call unknown);

2. algorithm not exact (quantum minimization may not reach
mininum);

3. nobody cares about quadratic speedups (GPUs can do that);

4. what’s this got to do with biomedicine?
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QPMCMC2
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Faster QPMCMC

» Collaboration between NTU, Foxconn, UCLA and KU Leuven.

» Lin C, Chen K, Lemey P, Suchard M, Holbrook A, Hsieh M
(2023). Quantum speedups for multiproposal MCMC.

» QPMCMC2 achieves eponential speedups for a large class of
discrete graphical models: O(P) to O(1) operations with only
O(log P) qubits

» QPMCMCQC2 fully explicit and exact
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Ancestral Trait Reconstruction

Wime >0, m# m' € {0,...2M, — 2}
wou o = £, (515) 20
ﬂ @”’”’:1

» We can always infer ancestral traits with the help of a
phylogenetic Ising model:

Pr(o'a|00aﬁy’77g) xexp | B ij,m’o'mam’

m,m’
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Bacterial Reticulate Evolution

» Reticulate evolution ruins all Marc’s fun. No more linear-time
likelihoods/gradients via dynamic programming.
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Ampicillin Resistance for 248 Salmonella Isolates

» We define a phylogenetic Ising model on a Neighbor-Net
graph with 3,313 vertices and 5,945 edges.

» Figure shows vertex-wise posterior modes from 150k
QPMCMC2 iterations with P = 127.
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Convergence as a Function
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Convergence as a Function of Oracle Calls

Log posterier(k)
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No Performance Penalty for Proposals

ESS per 10k oracles
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Intuition for QPMCMC2

» Qubits (quantum bits) |#) are complex vectors with
magnitude 1, i.e., (9]0) = 1.

» If orthogonal |6),,...,|0p) have magnitude 1, then so does

This is called a uniform superposition of the individual vectors.

All elements share the same probability amplitude 1/v/P + 1.

> If S0 o mp =1, then

P
> V05
p=0

also has magnitude 1.
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Intuition for QPMCMC2

» We cannot access all elements of a superposition, but we can
randomly sample one using quantum measurement.

» Measurement collapses the quantum state and returns one
element of the superposition with probability given by its

squared amplitude.

» Big ldea: cheaply manipulate quantum system to obtain

P
Z \/ 77(9;3) |‘9p>
p=0

and perform measurement to get next MCMC sample 60, with
probability 7(6).
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Implementing QPMCMC2

We begin by initializing 6 quantum registers to 0
100 10)44, 10044, 10)41, 10011 100

and load the current state 8(5~1) = 6 onto the second register at
cost O(log|©]):

100 100)44, 10024, )4, 10011 [0) s -
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Implementing QPMCMC2

Next, we apply an operator Oz that performs the Tjelmeland
correction by sampling from g(8o, -) and placing result in the third
register:

10)5100)345 10)34, 103, 10) 10)5
= 10)p 160)3; 18)s, 10)3, 0 10)s -
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Implementing QPMCMC2

We then create a superposition in the first register by placing its
log P qubits in superposition and, again, apply the operator Oy

that samples from g(6, -) and puts the result in the fourth register:

10} 100)34, [8)44, 10)2¢, 10 10) s

P
1 _
= =g 2 1PI 100}, By, 10}, [0)n [0);
p=0

P

1 -
53 2 1P)p 18034, B),, 05}, 00 0}

p=0
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Implementing QPMCMC2

Next, we apply the oracle gate O, that takes input from the 4th
register and outputs to the 5th:

P

79 |90>H0 }é>7{1 |0p>y2 |0>|'| |0>S

P

Z |90>H0 }9>H1 |9p>y2 |7T*(9p)>r| |0>5

We then apply a controlled rotation to the final register, getting

1 < _
N i go 1P) 180)34, 1), 18030, 17" (B )0

(V17O 005 + /- (6:) 5.
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Implementing QPMCMC2

For the penultimate step, we perform quantum measurement on
the final register

1 & _ )
NS ,,Z_% 1) 180245 [8) 5, 18p)2, 17°(85))

(V1= 7@ 0+ /7@ )s) -

If this register's qubit collapses to 1, our overall state is

Z /0(9)

and measurement of the 4th register effectively samples from the
multiproposal kernel.

lp )73 |00>H0 ‘é>7.{,1 ‘9p>7-[2 |7T*(9p)>r| ‘1>5
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Implementing QPMCMC2

Theorem
The quantum multiproposal MCMC algorithm described above that
satisfies m*(0,) < 1 for all p € {0,1,..., P} has a running time:

27(0g) + T(Ox+) + O(1)
Minpego,... py T (0p)
Here, Oz and Oy represent the quantum operations characterized

by G(6,0’) and 7*(-) respectively, and their circuit depths T(Oj)
and T(Ox+) do not depend on number of proposals P.

» Note: for many examples, such as the Ising model with bit-flip
Tjelmeland-corrected proposals, the denominator does not
decrease with larger P.
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Future Quantum MCMC Research

» within MH, locally-balanced proposals (Zanella, 2019) choose
among points in a neighborhood of the current position with
probabilities, e.g., \/7*(0);

» nonreversible MH (Turitsyn et al., 2008; Vucelja, 2014)
preserves momentum between proposals by, e.g., only
considering flipping + to . U-turns occur with probability

p(0+,05)/ [1— D p(0+,2:)
z+ 70+

for p(+,-) a globally defined transition probability matrix.
Multiple choices for p(£, F), but one is

p(0+70*) = max (07210(9’2) - ,D(9+,Z+)> :
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Future Quantum MCMC Research

» We are also thinking about quantum extensions to HMC. For
discrete models, quantum enhanced MH (Layden, 2023)
simulates quantum dynamics starting at binary state |6p)

10:) = U [0o) = e ™" |60)
and collapses superposition |6;) to get proposal 6*.

» \We can extend this to continuous distributions following the
quantum Hamiltonian descent algorithm (Leng, 2023), but
Heisenberg's uncertainty principle causes issues.
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