Bayes in the time of Big Data

Andrew J. Holbrook

Department of Human Genetics University of California, Los Angeles

January 22, 2020

Part 1. One hundred years of deadly flu

Part 2. A highly structured model for the spread of viruses along global transportation networks

- Part 2. A highly structured model for the spread of viruses along global transportation networks
- Part 3. Modern Bayesian inference

- Part 2. A highly structured model for the spread of viruses along global transportation networks
- Part 3. Modern Bayesian inference
- Part 4. Massive parallelization

- Part 2. A highly structured model for the spread of viruses along global transportation networks
- Part 3. Modern Bayesian inference
- Part 4. Massive parallelization
- Part 5. Global spread of influenza

- Part 2. A highly structured model for the spread of viruses along global transportation networks
- Part 3. Modern Bayesian inference
- Part 4. Massive parallelization
- Part 5. Global spread of influenza
- Part 6. Big Bayes

1918-1919 Influenza epidemic

"Spanish flu" infected 500 million people worldwide and killed 50 million.

17 million in India; 675, 300 and 400 thousand in the U.S., Brazil and Japan...

A-H1N1 influenza, no more aggressive than previous strains.

Successful spread linked to First World War.

Global spread of Spanish flu

Naive spatial distances

London

Halifax, Nova Scotia

New York

Ocean traffic passenger distance

London

New York

Halifax, Nova Scotia

Contemporary networks of global travel

Deadly pandemics

Question 1. How should we characterize, quantify and estimate rates of viral spread?

Question 1. How should we characterize, quantify and estimate rates of viral spread?

Question 2. Do certain subtypes travel more effectively around the world? If so, which?

Question 1. How should we characterize, quantify and estimate rates of viral spread?

Question 2. Do certain subtypes travel more effectively around the world? If so, which?

Question 3. How might we quantify our uncertainty?

Part 2. A highly structured model for the spread of viruses along global transportation networks

The challenge

You are given

- 1. pairwise "air traffic" or "effective" distances y_n , n = 1, ..., N, between N viral samples and
- 2. the evolutionary history of a specific viral strain.

You are tasked to

- 1. use this data to discover how quickly the strain travels through global air traffic space and
- 2. quantify your uncertainty with respect to the relevant quantity.

Brownian motion

Brownian motion

Multidimensional Brownian diffusion

A standard Brownian motion w_t , t > 0 satisfies

(i)
$$w_0 = 0$$

(ii) $(w_{t_4} - w_{t_3}) \perp (w_{t_2} - w_{t_1})$ for $t_1 < t_2 \le t_3 < t_4$
(iii) $(w_{t_2} - w_{t_1}) \sim N(0, t_2 - t_1)$ for $t_2 > t_1$
(iv) w_t is continuous as a function of t

Stack independent $w_{d,t}$, d = 1, ..., D and premultiply by infinitesimal rate matrix Σ to get general

$$\mathbf{x}_t = \sqrt{\Sigma} \, \mathbf{w}_t$$

"Diffusivity"

In Fick's laws of diffusion, the *diffusivity* or *diffusion coefficient* is proportional to the squared velocity of a diffusing particle (e.g. m^2/s).

For the stochastic differential equation

$$\mathrm{d}\mathbf{x}_t = \sqrt{\Sigma} \,\mathrm{d}\mathbf{w}_t$$

we use the identity

$$(\mathsf{d} w_t)^2 = \mathsf{d} t$$

to get

$$\langle \mathsf{d} \mathbf{x}_t, \mathsf{d} \mathbf{x}_t
angle = \mathsf{tr}\left(\Sigma\right) \, \mathsf{d} t \quad \mathsf{or} \quad \mathsf{tr}\left(\Sigma\right) " = " \, rac{\langle \mathsf{d} \mathbf{x}_t, \mathsf{d} \mathbf{x}_t
angle}{\mathsf{d} t} \, .$$

A tale of two networks

Bayesian multidimensional scaling

Let **Y** be an $N \times N$ distance matrix with elements $y_{nn'}$ the distance between objects n and n'. Oh and Raftery (2001) model

$$y_{nn'} \sim \mathcal{N}\left(||\mathbf{x}_n - \mathbf{x}_{n'}||, \sigma^2\right) I(y_{nn'} > 0)$$

for random variables $\mathbf{x}_n, \mathbf{x}_{n'} \in \mathbb{R}^p$. Conditioned on latents $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^T$, the *BMDS* likelihood is

$$p(\mathbf{Y}|\mathbf{X}, \sigma^2) \propto (\sigma^2)^{\frac{N(1-N)}{4}} \exp\left(-\sum_{n>n'} r_{nn'}
ight)$$

 $r_{nn'} = rac{(y_{nn'} - \delta_{nn'})^2}{2\sigma^2} + \log \Phi\left(rac{\delta_{nn'}}{\sigma}
ight),$

where $\delta_{nn'} = ||\mathbf{x}_n - \mathbf{x}_{n'}||.$

Bayesian multidimensional scaling

A tale of two networks

Brownian phylogenetic diffusion

Brownian phylogenetic diffusion

Associate to each tip *n* of a rooted, *N*-tipped, binary tree a Brownian motion \mathbf{x}_n , centered at its parent node $\mathbf{x}_{pa(n)}$. Then

$$\mathbf{x}_n | \mathbf{x}_{pa(n)} \sim N_p(\mathbf{x}_{pa(n)}, t_n \Sigma),$$

for t_n the branch length of node n to its parent.

Write the joint distribution as

$$\boldsymbol{X} \sim \textit{MN}_{N \times p}(\boldsymbol{0}, \boldsymbol{V}, \boldsymbol{\Sigma})$$

for

$$[\mathbf{V}]_{n} = t_{n} + t_{pa(n)} + t_{pa(pa(n))+\dots}$$
$$[\mathbf{V}]_{nn'} = \begin{cases} [\mathbf{V}]_{n} - t_{n}, & pa(n) = pa(n') \\ 0, & o/w \end{cases}$$

Bayesian phylogenetic multidimensional scaling

Part 3. Modern Bayesian inference

Likelihood based inference and Bayes

Assume data generated according to $\mathbf{y}_n \stackrel{\perp}{\sim} f(\mathbf{y}_n | \boldsymbol{\theta}, \mathbf{x}_n)$ with prior distributions $\boldsymbol{\theta} \sim p_{\boldsymbol{\theta}}(\boldsymbol{\theta})$ and $(\mathbf{x}_1, \dots, \mathbf{x}_N) = \mathbf{X} \sim p_{\mathbf{x}}(\mathbf{X})$.

Bayes' theorem says:

$$p(\theta|\mathbf{Y}) = \frac{f(\mathbf{Y}|\theta) p_{\theta}(\theta)}{f(\mathbf{Y})} = \frac{\int_{\mathbf{X}} f(\mathbf{Y}|\mathbf{X}, \theta) p_{\mathsf{x}}(\mathbf{X}) d\mathbf{X} p_{\theta}(\theta)}{\int_{\Theta} \left(\int_{\mathbf{X}} f(\mathbf{Y}|\mathbf{X}, \theta) p_{\mathsf{x}}(\mathbf{X}) d\mathbf{X}\right) p_{\theta}(\theta) d\theta},$$

where $f(\mathbf{Y}|\boldsymbol{\theta}, \mathbf{X}) = \prod_{n=1}^{N} f(\mathbf{y}_{n}|\boldsymbol{\theta}, \mathbf{x}_{n})$ is the *likelihood* function and $f(\mathbf{Y}|\boldsymbol{\theta})$ is the marginal likelihood.

Random walk Metropolis

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Augment parameter space with auxiliary Gaussian variable ${\bf p}$ and construct a Hamiltonian energy function:

$$egin{aligned} \mathcal{H}(\mathbf{x},\mathbf{p}) &= -\log(\pi(\mathbf{x}) imes \phi(\mathbf{p})) \ & \propto -\log\pi(\mathbf{x}) + rac{1}{2}\mathbf{p}^{T}\mathbf{p}\,. \end{aligned}$$

New states of the Markov chain are proposed by forward integrating Hamilton's equations:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \frac{\partial H}{\partial \mathbf{p}} = \mathbf{p}$$
$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\partial H}{\partial \mathbf{x}} = \nabla \log \pi(\mathbf{x}) .$$

Numerical simulation induces discretization error, which we correct with a Metropolis accept-reject step.

Hamiltonian Monte Carlo

Benefits. HMC computes high-dimensional integrals; scales to 30,000+ parameters.

Challenges. HMC necessitates repeated computation of log-likelihood and its gradient (best case O(N)).

HMC for BMDS?

The BMDS likelihood scales $\mathcal{O}(N^2)$:

$$-\log p(\mathbf{Y}|\mathbf{X},\sigma^2) \propto \sum_{n>n'} rac{\left(y_{nn'}-\delta_{nn'}
ight)^2}{2\sigma^2} + \log \Phi\left(rac{\delta_{nn'}}{\sigma}
ight) \,.$$

The gradient also scales $\mathcal{O}(N^2)$:

$$\begin{split} \frac{\partial}{\partial \mathbf{x}_{n}} \log p(\mathbf{Y}|\mathbf{X}, \sigma^{2}) &= \frac{\partial}{\partial \delta_{nn'}} \log p(\mathbf{Y}|\mathbf{X}, \sigma^{2}) \frac{\partial \delta_{nn'}}{\partial \mathbf{x}_{n}} \\ &= -\sum_{n' \neq n} \left(\frac{(\delta_{nn'} - y_{nn'})}{\sigma^{2}} + \frac{\phi(\delta_{nn'}/\sigma)}{\sigma \Phi(\delta_{nn'}/\sigma)} \right) \frac{(\mathbf{x}_{n} - \mathbf{x}_{n'})}{\delta_{nn'}} \\ &:= -\sum_{n' \neq n} \mathbf{r}_{nn'} \,. \end{split}$$

Recap

Goal: quantify and infer the diffusion rate of global contagion.

- 1. Brownian diffusion is a useful model (flexible/tractable). Brownian diffusion does not account for network structures.
- Model adapts Brownian diffusion to network realities.
 Model inference is hard: integral dimension grows O(N).
- 3. HMC scales inference to tens of thousands of dimensions. HMC for model costs $\mathcal{O}(N^2)$.

HMC for BMDS?

The BMDS likelihood scales $\mathcal{O}(N^2)$:

$$-\log p(\mathbf{Y}|\mathbf{X},\sigma^2) \propto \sum_{n>n'} rac{\left(y_{nn'}-\delta_{nn'}
ight)^2}{2\sigma^2} + \log \Phi\left(rac{\delta_{nn'}}{\sigma}
ight) \,.$$

The gradient also scales $\mathcal{O}(N^2)$:

$$\begin{split} \frac{\partial}{\partial \mathbf{x}_{n}} \log p(\mathbf{Y}|\mathbf{X}, \sigma^{2}) &= \frac{\partial}{\partial \delta_{nn'}} \log p(\mathbf{Y}|\mathbf{X}, \sigma^{2}) \frac{\partial \delta_{nn'}}{\partial \mathbf{x}_{n}} \\ &= -\sum_{n' \neq n} \left(\frac{(\delta_{nn'} - y_{nn'})}{\sigma^{2}} + \frac{\phi(\delta_{nn'}/\sigma)}{\sigma \Phi(\delta_{nn'}/\sigma)} \right) \frac{(\mathbf{x}_{n} - \mathbf{x}_{n'})}{\delta_{nn'}} \\ &:= -\sum_{n' \neq n} \mathbf{r}_{nn'} \,. \end{split}$$

Part 4. Massive parallelization

Parallelization methods

Central processing unit (CPU):

- 1. Global parallelization: 2 to 60 cores (multi-core)
- 2. Local parallelization: single instruction multiple data (SIMD)

Graphics processing unit (GPU):

- 1. Thousands of cores (many-core)
- 2. Single instruction multiple threads (SIMT)
- 3. High memory bandwidth (not strictly maths anymore)

Exploiting likelihood parallelism

Significant speedups

Significant speedups

Open-source software

- MASSIVEMDS: C++ library and R package; https://github.com/suchard-group/MassiveMDS
- 2. RCPPXSIMD: R wrapper package for XSIMD; https://cran.r-project.org/web/packages/RcppXsimd

Part 5. Global spread of influenza

Influenza data

Data consist of spatial locations and RNA sequences of 5,392 viral samples from 189 countries between 2001 and 2013.

Influenza type A:	Influenza type B:			
1. H1N1: 1,370	1. Victoria: 1,393			
2. H3N2: 1,389	2. Yamagata: 1,240			

We convert locations data into

$$\binom{5,392}{2} = 14,534,136$$

pairwise "air traffic" distances.

Model selection and inference

5-fold cross validation with log pointwise predictive density (\widehat{lpd}) from 10,000 MCMC samples dictates dimension count of 6.

Dimension	2	3	4	5	6	7
$-\widehat{lpd}$ ($ imes 10^{6}$)	7.1	4.2	3.4	3.5	2.8	7.0

We then use HMC-within-Gibbs to generate 2 million states for all $X_{N \times 6}$ and strain-specific Σ and T.

Learning phylogenies

H1N1

H3N2

Learning diffusivities

Recall *diffusivity* takes units of squared distance over time. We take diffusivity $tr(\Sigma)$ as object of parametric interest.

Worldwide air traffic space

Part 6. Big Bayes

Applications in neural decoding

Future work I, modeling

Future work II, scalability

- 1. Sampling developments [computational statistics] (Holbrook et al. 2018)
- 2. Massive parallelization [statistical computing] (Holbrook et al. 2019b)
- 3. Neural network aided MCMC [just plain fun] (Li, Holbrook et al. 2019)

Thank you!

Publications I

- Holbrook A, Lemey P, Baele G, Dellicour S, Brockmann D, Rambaut A, Suchard M. Massive parallelization boosts big Bayesian multidimensional scaling. Submitted to Journal of Computational and Graphical Statistics, 2019.
- Ji X, Zhang Z, Holbrook A, Nishimura A, Baele G, Rambaut A, Lemey P, Suchard M. Gradients do grow on trees: a linear-time O(N)-dimensional gradient for statistical phylogenetics. Submitted to Annals of Applied Statistics, 2019.
- Holbrook A, Tustison N, Marquez F, Roberts J, Yassa M, Gillen D. Anterolateral entorhinal cortex thickness as a biomarker for early detection of Alzheimer's disease. Submitted to Alzheimer's and Dementia: The Journal of the Alzheimer's Association, 2019.
- Lan S, Holbrook A, Elias G, Fortin N, Ombao H, Shahbaba B. Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices. Bayesian Analysis, In Press, 2019.
- 5. Holbrook A, Lumley T, Gillen D. *Estimating prediction error for complex samples*. Canadian Journal of Statistics, In Press, 2019.
- Tustison N, Holbrook A, Avants B, Roberts J, Cook P, Reagh Z, Stone J, Gillen D, Yassa M. Longitudinal mapping of cortical thickness measurements: an Alzheimer's Disease Neuroimaging Initiative-based evaluation study. Journal of Alzheimer's Disease, vol. 71, no. 1, pp. 165-183, 2019.

Publications II

- Li L, Holbrook A, Shahbaba B, Baldi P. Neural network gradient Hamiltonian Monte Carlo. Computational Statistics, vol. 34, no. 1, pp. 281-299, 2019.
- 8. Holbrook A. Differentiating the pseudo determinant. Linear Algebra and its Applications, vol. 548, pp. 293-304, 2018.
- Holbrook A, Lan S, Vandenberg-Rodes A, Shahbaba B. Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation. Journal of Statistical Computation and Simulation, vol. 88, no. 5, pp. 982-1002, 2018.
- Holbrook A, Vandenberg-Rodes A, Fortin N, Shahbaba B. A Bayesian supervised dual-dimensionality reduction model for simultaneous decoding of LFP and spike train signals. Stat Journal, vol. 6, no. 1, pp. 53-67, 2017.
- Grill J, Holbrook A, Pierce A, Hoang D, Gillen D. Attitudes toward Potential Participant Registries. Journal of Alzheimer's Disease, vol. 56, no. 3, pp. 939-946, 2017.