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Part 1. One hundred years of deadly flu
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1918-1919 Influenza epidemic

“Spanish flu” infected 500
million people worldwide
and killed 50 million.

17 million in India; 675, 300
and 400 thousand in the
U.S., Brazil and Japan...

A-H1N1 influenza, no more
aggressive than previous
strains.

Successful spread linked to
First World War.
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Global spread of Spanish flu
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Naive spatial distances
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Halifax, Nova Scotia
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Contemporary networks of global travel
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1900

1920

1940

1960

1980

2000

“Spanish influenza”

A-H1N1


50-100 million deaths

“Asian flu”

A-H2N2


1-4 million deaths

“Hong Kong flu”

A-H3N2


1 million deaths

“Swine flu”

A-H1N1


150-580 thousand deaths

Deadly pandemics
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Some questions

Question 1. How should we characterize, quantify
and estimate rates of viral spread?

Question 2. Do certain subtypes travel more effectively
around the world? If so, which?

Question 3. How might we quantify our uncertainty?
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Part 2. A highly structured model for the spread of
viruses along global transportation networks

11



The challenge
You are given

1. pairwise “air traffic” or “effective” distances yn, n = 1, . . . ,N,
between N viral samples and

2. the evolutionary history of a specific viral strain.

You are tasked to
1. use this data to discover how quickly the strain travels

through global air traffic space and
2. quantify your uncertainty with respect to the relevant quantity.
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Brownian motion
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Brownian motion
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Multidimensional Brownian diffusion

A standard Brownian motion wt , t > 0 satisfies
(i) w0 = 0
(ii) (wt4 − wt3) ⊥ (wt2 − wt1) for t1 < t2 ≤ t3 < t4

(iii) (wt2 − wt1) ∼ N(0, t2 − t1) for t2 > t1

(iv) wt is continuous as a function of t

Stack independent wd,t , d = 1, . . . ,D and premultiply by
infinitesimal rate matrix Σ to get general

xt =
√
Σwt .
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“Diffusivity”
In Fick’s laws of diffusion, the diffusivity or diffusion coefficient is
proportional to the squared velocity of a diffusing particle (e.g.
m2/s).

For the stochastic differential equation

dxt =
√
Σ dwt

we use the identity

(dwt)
2 = dt

to get

〈dxt , dxt〉 = tr (Σ) dt or tr (Σ) “ = ”
〈dxt , dxt〉

dt .
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A tale of two networks
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Bayesian multidimensional scaling

Let Y be an N ×N distance matrix with elements ynn′ the distance
between objects n and n′. Oh and Raftery (2001) model

ynn′ ∼ N
(
||xn − xn′ ||, σ2) I(ynn′ > 0)

for random variables xn, xn′ ∈ Rp . Conditioned on latents
X = (x1 , . . . , xN)

T , the BMDS likelihood is

p(Y|X, σ2) ∝
(
σ2)N(1−N)

4 exp

(
−
∑
n>n′

rnn′

)

rnn′ =
(ynn′ − δnn′)2

2σ2 + logΦ

(
δnn′

σ

)
,

where δnn′ = ||xn − xn′ ||.
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A tale of two networks
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Brownian phylogenetic diffusion
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Brownian phylogenetic diffusion
Associate to each tip n of a rooted, N-tipped, binary tree a
Brownian motion xn, centered at its parent node xpa(n). Then

xn|xpa(n) ∼ Np(xpa(n), tn Σ) ,

for tn the branch length of node n to its parent.

Write the joint distribution as

X ∼ MNN×p(0,V,Σ)

for

[V]n = tn + tpa(n) + tpa(pa(n))+...

[V]nn′ =

{
[V]n − tn, pa(n) = pa(n′)

0, o/w Zhang et al. 2019
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Bayesian phylogenetic multidimensional scaling
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Part 3. Modern Bayesian inference
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Likelihood based inference and Bayes

Assume data generated according to yn
⊥∼ f (yn|θ, xn) with prior

distributions θ ∼ pθ(θ) and (x1, . . . , xN) = X ∼ px(X).

Bayes’ theorem says:

p(θ|Y) =
f (Y|θ) pθ(θ)

f (Y)
=

∫
X f (Y|X,θ)px(X)dX pθ(θ)∫

Θ

(∫
X f (Y|X,θ)px(X)dX

)
pθ(θ)dθ

,

where f (Y|θ,X) =
∏N

n f (yn|θ, xn) is the likelihood function and
f (Y|θ) is the marginal likelihood.
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Random walk Metropolis
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Hamiltonian Monte Carlo
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Hamiltonian Monte Carlo
Augment parameter space with auxiliary Gaussian variable p and
construct a Hamiltonian energy function:

H(x,p) = − log(π(x)× φ(p))

∝ − log π(x) + 1
2pT p .

New states of the Markov chain are proposed by forward
integrating Hamilton’s equations:

dx
dt =

∂H
∂p = p

dp
dt = −∂H

∂x = ∇ log π(x) .

Numerical simulation induces discretization error, which we correct
with a Metropolis accept-reject step.
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Hamiltonian Monte Carlo

Benefits. HMC computes high-dimensional integrals;
scales to 30,000+ parameters.

Challenges. HMC necessitates repeated computation of
log-likelihood and its gradient (best case O(N)).
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HMC for BMDS?

The BMDS likelihood scales O(N2):

− log p(Y|X, σ2) ∝
∑
n>n′

(ynn′ − δnn′)2

2σ2 + logΦ

(
δnn′

σ

)
.

The gradient also scales O(N2):

∂

∂xn
log p(Y|X, σ2) =

∂

∂δnn′
log p(Y|X, σ2)

∂δnn′

∂xn

= −
∑
n′ 6=n

(
(δnn′ − ynn′)

σ2 +
φ(δnn′/σ)

σΦ(δnn′/σ)

)
(xn − xn′)

δnn′

:= −
∑
n′ 6=n

rnn′ .
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Recap

Goal: quantify and infer the diffusion rate of global contagion.

1. Brownian diffusion is a useful model (flexible/tractable).
Brownian diffusion does not account for network structures.

2. Model adapts Brownian diffusion to network realities.
Model inference is hard: integral dimension grows O(N).

3. HMC scales inference to tens of thousands of dimensions.
HMC for model costs O(N2).
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HMC for BMDS?

The BMDS likelihood scales O(N2):
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σ
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Part 4. Massive parallelization

33



Parallelization methods

Central processing unit (CPU):
1. Global parallelization: 2 to 60 cores (multi-core)
2. Local parallelization: single instruction multiple data (SIMD)

Graphics processing unit (GPU):
1. Thousands of cores (many-core)
2. Single instruction multiple threads (SIMT)
3. High memory bandwidth (not strictly maths anymore)
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Exploiting likelihood parallelism
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Open-source software

1. MassiveMDS: C++ library and R package;
https://github.com/suchard-group/MassiveMDS

2. RcppXsimd: R wrapper package for Xsimd;
https://cran.r-project.org/web/packages/RcppXsimd

38

https://github.com/suchard-group/MassiveMDS
https://cran.r-project.org/web/packages/RcppXsimd


Part 5. Global spread of influenza
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Influenza data

Data consist of spatial locations and RNA sequences of 5,392 viral
samples from 189 countries between 2001 and 2013.

Influenza type A:

1. H1N1: 1,370
2. H3N2: 1,389

Influenza type B:

1. Victoria: 1,393
2. Yamagata: 1,240

We convert locations data into(
5, 392

2

)
= 14, 534, 136

pairwise “air traffic” distances.
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Model selection and inference

5-fold cross validation with log pointwise predictive density (l̂pd)
from 10,000 MCMC samples dictates dimension count of 6.

Dimension 2 3 4 5 6 7
-l̂pd (×106) 7.1 4.2 3.4 3.5 2.8 7.0

We then use HMC-within-Gibbs to generate 2 million states for all
XN×6 and strain-specific Σ and T .
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Learning phylogenies
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H1N1
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H3N2
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Learning diffusivities
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Recall diffusivity takes units of squared distance over time. We
take diffusivity tr(Σ) as object of parametric interest.
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Part 6. Big Bayes
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Applications in neural decoding
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Hawkes process

Bayesian MDSPhylogenetic inference

1. Predictive phylogenetics

(K25 under review)

2. And beyond!

Viral epidemiologyNeural decoding Self-excitatory

processes

Future work I, modeling
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Future work II, scalability

1. Sampling developments [computational statistics]
(Holbrook et al. 2018)

2. Massive parallelization [statistical computing]
(Holbrook et al. 2019b)

3. Neural network aided MCMC [just plain fun]
(Li, Holbrook et al. 2019)
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Thank you!
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