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Here we present the open-source and cross-platform BEAST X software 
that combines molecular phylogenetic reconstruction with complex trait 
evolution, divergence-time dating and coalescent demographics in an 
efficient statistical inference engine. BEAST X significantly advances the 
flexibility and scalability of evolutionary models supported. Novel clock 
and substitution models leverage a large variety of evolutionary processes; 
discrete, continuous and mixed traits with missingness and measurement 
errors; and fast, gradient-informed integration techniques that rapidly 
traverse high-dimensional parameter spaces.

The Bayesian evolutionary analysis sampling trees (BEAST) platform 
stands as one of the leading inference tools across a range of biological 
fields from systematic biology to molecular epidemiology of infectious 
diseases. BEAST’s success arises from its focus on sequence, phenotypic 
and epidemiological data integration along time-scaled phylogenetic 
trees. Motivation for BEAST development builds from the rapid growth 
of pathogen genome sequencing to deliver real-time inference for 
the emergence and spread of rapidly evolving pathogens to better 
understand their epidemiology and evolutionary dynamics. Recent 
scientific successes using the BEAST platform uncover the origins, 
spread and persistence of multiple Ebola virus outbreaks1, severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) variants2 and mpox 
virus lineages3.

BEAST X introduces salient advances over previous software ver-
sions4 by providing a substantially more flexible and scalable platform 
for evolutionary analysis with a strong focus on pathogen genom-
ics. Two thematic thrusts describe these advances: state-of-science, 
high-dimensional models span multiple biological and public 
health domains including sequence evolution, phylodynamics and 

phylogeography, while new computational algorithms and emerging 
statistical sampling techniques notably accelerate inference across 
this collection of complex, highly structured models.

BEAST X incorporates new extensions to existing substitution 
processes to model additional features affecting sequence changes. 
These include a covarion-like Markov-modulated extension that incor-
porates site- and branch-specific heterogeneity by integrating over 
candidate substitution processes to capture different selective pres-
sures over site and time5. Random-effects substitution models extend 
common continuous-time Markov chain (CTMC) models into a richer 
class of processes capable of capturing a wider variety of substitution 
dynamics, enabling a more appropriate characterization of under-
lying substitution processes6. To enable scaling of sampling-based 
inference under such models for large trees and state spaces, BEAST 
X now includes fast approximate likelihood gradients for all unknown 
substitution model parameters7. We refer to Methods for additional 
details regarding these substitution models.

BEAST X complements flexible sequence substitution models with 
advanced extensions to nonparametric tree-generative coalescent 
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Fig. 1 | Phylodynamic analysis of the SARS-CoV-2 Omicron BA.1 invasion 
in England. a,b, A summary of estimates from a simultaneous estimation of 
sequence and discrete (geographic) trait data with a GLM extension of the 
discrete-trait model and two epochs (with 25 December 2021 as the transition 
time), showing the effect size estimates for a subset of GLM predictors 
considered2 for both epochs (a) and the mean Markov jump estimates between 
256 lower-tier local authorities (LTLAs) for the expansion phase epoch, ordered 
in a clockwise fashion first by being part of Greater London (blue) or not (yellow) 
and then by population size (b). c,d, A spread.gl30 visualization of a RRW 
model fit to latitudes and longitudes (randomly drawn from within the LTLA of 
sampling) for the same large transmission lineage. Part of the maximum clade 
credibility tree is projected up to 13 December 2021 (c) and 25 December 2021 
(d), respectively. The arcs represent dispersal events with a light- and dark-blue 

color from origin to destination, respectively. e, Comparison of doubling-time 
estimates based on an exponential growth coalescent model applied to about 
1,000 genomes sampled during the expansion phase of Omicron BA.1 and Alpha 
(B.1.1.7) in England based on 10,000 posterior samples. f, Summary of estimates 
of effective population size (Ne) under a nonparameteric skygrid coalescent 
model28 and estimates of the effective reproduction number (Re) under an 
episodic birth–death sampling model9, based on 6,000 and 3,000 posterior 
samples, respectively. The yellow-shaded area in the Re plot represents the time 
period during which ‘Plan B’ measures were implemented in the UK. Box plots in 
a and e show the median (middle quartile) as a thick line, the box represents the 
upper and lower quartiles, and the whiskers indicate the 95% highest posterior 
density interval, whereas f shows the 95% credible intervals in blue and the 
median in black.
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models that correct for preferential sequence sampling as a function 
of time8 and high-dimensional episodic birth–death sampling mod-
els9. Across tasks, BEAST X enables flexible trait evolution modeling 
for larger numbers of complex traits. Popular relaxed clock models 
capture various sources of rate heterogeneity on the phylogenetic 
tree, but their large numbers of model parameters can make inference 
difficult. BEAST X improves the classic uncorrelated relaxed clock 
model with a time-dependent evolutionary rate extension that accom-
modates rate variations through time10, a newly developed, continuous 
random-effects clock model11 and a more general mixed-effects relaxed 
clock model12. BEAST X enhances the previously computationally 
infeasible classic random local clock (RLC) model with a tractable and 
interpretable shrinkage-based local clock model13. We refer to Methods 
for additional details regarding these molecular clock models.

These advances underpin fast, flexible phylogeographic mod-
eling in BEAST X. Discrete-trait phylogeography through CTMC mod-
eling14 remains an attractive and widely used inference methodology. 
Geographic sampling bias sensitivity of the CTMC model is a common 
concern in phylogeographic analyses15. Although helpful, structured 
coalescent models fail to completely account for such bias16. BEAST X 
solves this problem with novel modeling17 and computational infer-
ence strategies: when parameterizing between-location transition 
rates as log-linear functions of environmental or epidemiological 
predictors18, missing predictor values often arise for one or more 
location pairs. BEAST X integrates out missing data within the Bayes-
ian inference procedure by using a new Hamiltonian Monte Carlo 
(HMC) approach to jointly sample all missing predictor values from 
their full conditional distribution2. Figure 1 illustrates discrete-trait 
phylogeographic and phylodynamic analyses of SARS-CoV-2 enabled 
by these BEAST X advances, focusing on the Omicron BA.1 invasion 
in England2.

Continuous-trait phylogeography using relaxed random walk 
(RRW) models19 requires precise spatial location data for sampled 
sequences. Low-precision geographic location data represent a major 
barrier for spatially explicit phylogeographic inference of fast-evolving 
pathogens. A new approach20 incorporates heterogeneous prior sam-
pling probabilities—informed by external data such as outbreak loca-
tions—over a collection of subpolygons that make up a geographic 
area. BEAST X now also defines homogeneous and heterogeneous prior 
ranges of sampling coordinates21. At the same time, BEAST X responds 
to computational challenges associated with learning branch-specific 

rate multipliers for large datasets by incorporating a scalable method 
to efficiently fit RRWs and infer their branch-specific parameters in a 
Bayesian framework through HMC sampling22.

Additional significant modeling enhancements include the scal-
able incorporation of general Gaussian (for example, Ornstein–Uhlen-
beck) trait-evolution models23, missing-trait models24, phylogenetic 
factor analysis25 and phylogenetic multivariate probit26 within BEAST 
X. In particular, these methods successfully model dependencies 
between high-dimensional trait data with dozens or even thousands 
of observations per taxon with the help of novel computational infer-
ence techniques.

Newly introduced preorder tree traversal algorithms in BEAST X 
enable many of the advances we describe above. Let N denote the num-
ber of taxa, or leaves, on a tree. Preorder tree traversal algorithms com-
plement their postorder counterparts and calculate vectors of partial 
likelihoods (for discrete traits) and sufficient statistics (for continuous 
traits) for each branch. With the pre- and postorder vectors together, 
one calculates derivatives to give rise to linear-in-N evaluations of 
high-dimensional gradients for branch-specific parameters of inter-
est (for example, evolutionary rates of discrete/continuous traits and 
divergence times)11,13,22–27. These scalable, high-dimensional gradients 
enable much higher performance Markov-chain Monte-Carlo transi-
tion kernels to efficiently simulate phylogenetic, phylogeographic and 
phylodynamic posterior distributions.

Linear-in-N gradient algorithms enable high-performance HMC 
transition kernels to sample from high-dimensional spaces of param-
eters that were previously computationally burdensome to learn. 
BEAST X implements linear gradients with HMC for a broad collection 
of gold-standard models: the nonparametric coalescent-based skygrid 
model28,29 now scalably infers past population dynamics without strong 
assumptions regarding population size trends; mixed-effects and 
shrinkage-based clock models improve classic uncorrelated relaxed 
and random local clock models by incorporating biologically rich fea-
tures to capture rate heterogeneities11; a variety of new continuous-trait 
evolution models learn branch-specific rate multipliers22,24,26; and novel 
divergence-time models efficiently overcome complex node-height 
restrictions by operating in a transformed space27. Despite the 
increased computational cost of gradient evaluations, Table 1 shows 
that applications of these linear-time HMC samplers achieve substan-
tial increases in effective sample size (ESS) per unit time compared 
with the conventional Metropolis–Hastings samplers that previous 
versions of BEAST provide7,9,11,24,27. Note that these speedups are indica-
tive and can be sensitive to the size (for example, number of taxa and 
number of sites; Table 1) and nature of the dataset, and to the tuning 
of the HMC operations. While many of the models in BEAST X already 
use HMC transition kernels (Table 1), ongoing developments target 
further extending the list of models supported by HMC. In addition, 
development and integration of novel and existing evolutionary, clock 
and coalescent models warrant continued efforts into designing and 
fine-turning accompanying HMC transition kernels. Specific to the 
data analysis presented here will be an increased focus on designing 
phylogeographic model formulations that are better suited to accom-
modating sampling bias and that offer more flexibility in their general-
ized linear model (GLM) extension.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-025-02751-x.
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Methods
Substitution models
Among the newly developed and incorporated substitution models 
in BEAST X are Markov-modulated models (MMMs), which consti-
tute a class of mixture models that allow the substitution process to 
change across each branch and for each site independently within an 
alignment5. To this end, MMMs are made up of a number of K substitu-
tion models (for example, nucleotide, amino acid or codon models) 
of dimension S to construct the KS × KS instantaneous rate matrix 
used in calculating the observed sequence data likelihood. This aug-
mented dimensionality of MMMs leads to increased computational 
demands that we mitigate through recent developments in BEAGLE, a 
high-performance computational library for phylogenetic inference31. 
MMMs have been shown to readily integrate with Bayesian model selec-
tion through (log) marginal likelihood estimation, to substantially 
improve model fit compared with standard CTMC substitution models 
and to impact phylogenetic tree estimation in examples from bacterial, 
viral and plastid genome evolution5.

Random-effects substitution models form another extension of 
standard CTMC models that incorporate additional rate variation by 
representing the original (base) model as fixed-effect model param-
eters and allow the additional random effects to capture deviations 
from the simpler process, thereby enabling a more appropriate 
characterization of underlying substitution processes while retain-
ing the basic structure of the base model that may be biologically 
or epidemiologically motivated6. Given that random-effects sub-
stitution models are in general overparameterized and, as such, not 
identifiable by the observed sequence data likelihood alone, one 
may use shrinkage priors to regularize the random effects, pulling 
them (often strongly) to be near or equal to 0 when the data provide 
little or no information to the contrary and, otherwise, attempting 
to impart little bias into the posterior. Further, shrinkage priors also 
aid in the performance of model selection, determining whether a 
particular random effect should be excluded from the model. One 
may use these models to study the strongly increased rate of C → T 
substitutions over the reverse T → C substitutions in SARS-CoV-2, a 
phenomenon that is a violation of the common phylogenetic assump-
tion of reversibility that the majority of standard CTMC substitution 
models make. Applied to a dataset of 583 SARS-CoV-2 sequences, 
an HKY model with random effects exhibits strong signals of non-
reversibility in the substitution process, and posterior predictive 
model checks clearly show it to be a more adequate model than a 
reversible model7.

Molecular clock models
Recently developed molecular clock models include a time-dependent 
evolutionary rate model that accommodates evolutionary rate varia-
tions through time10. Such a phenomenon is now widely recognized 
in various organisms, with particular prevalence in rapidly evolving 
viruses that have a relatively long-term transmission history in animal 
and human populations32. This novel molecular clock model builds 
upon phylogenetic epoch modeling33 to specify a sequence of unique 
substitution processes throughout evolutionary history, one for each 
of M discretized time intervals in the epoch structure determined by 
boundaries at times T0 < T1 < … < TM−1 < TM, where TM = ∞. In this struc-
ture, the boundaries T1 to TM−1 determine a shift in evolutionary rate 
that simultaneously applies to all lineages in the tree at that point 
in time. This model uncovers a strong time-dependent effect that 
implies rate variation over four orders of magnitude in both foamy 
virus co-speciation and lentivirus evolutionary histories. The model 
improves node height (that is, time to most recent common ances-
tor) estimation and readily integrates with Bayesian model selection 
through (log) marginal likelihood estimation, where the inclusioin of 
time dependence yields a better fit to the data compared with other 
molecular clock models10.

A novel continuous random-effects relaxed clock model offers 
an alternative parameterization to the standard uncorrelated relaxed 
clock model11. In this model, the evolutionary rate ri on branch i follows

log ri = β0 + ϵi,

where β0 is an unknown grand mean representing the background rate 
in log-space and ϵi are independent and normally distributed random 
variables with mean 0 and estimable variance. A standard approach in 
BEAST X across molecular clock models is to make use of a conditional 
reference prior34 on the global tree-wise mean parameter exp(β0). This 
clock model leads to higher-dimensional parameter spaces than a 
simple strict clock model, but challenges in likelihood-based inference 
from these high-dimensional models have been addressed through 
applications in gradient-based optimization methods and HMC sam-
pling (see below).

A more general mixed-effects relaxed clock model12 that combines 
both fixed and random effects in the evolutionary rate is also available, 
with the evolutionary rate parameter ri on branch i now expanding to

log ri = β0 +
p
∑
j=1

Xijβj + ϵi,

where βj is the estimated effect size of the jth covariate Xij (out of p 
covariates). For example, modeling a clade-specific rate effect with 
coefficient βj, one would set Xij = 1 for all branches encompassed by the 
clade and Xij = 0 for all other branches. This mixed-effects model has 
been used to confirm considerable rate variation among HIV-1 group M 
subtypes that cannot be adequately modeled by uncorrelated relaxed 
clock models, also yielding a time to the most recent common ances-
tor of HIV-1 group M that is earlier than the uncorrelated relaxed clock 
estimate for the same dataset.

Finally, the original RLC model has been reparameterized to tackle 
convergence and statistical mixing issues, and to achieve scalability 
to phylogenies with large numbers of taxa13. To this end, the novel 
shrinkage-based RLC assumes that clock rates are autocorrelated and 
that the incremental differences between each clock rate and its paren-
tal clock rate are equipped with a flexible, heavy-tailed, Bayesian bridge 
before shrink increments of change between branch-specific clocks, 
thereby enabling the use of a computationally efficient sampling 
approach to perform inference35. HMC sampling is used to generate 
proposals in increment space, using preconditioning to improve HMC 
performance by rescaling increment proposals, allowing larger steps to 
be taken in dimensions with larger variance. This novel shrinkage-based 
RLC has been successfully used in problems that once appeared compu-
tationally impractical, such as the study of a heritable clock structure 
of various surface glycoproteins of influenza A virus in the absence of 
prior knowledge about clock placement13.

HMC sampling
HMC constitutes a gradient-based alternative to random-walk MCMC 
for efficient parameter inference, yielding markedly improved param-
eter estimation efficiency. HMC transition kernels leverage gradients 
to produce distant proposals with relatively high acceptance rates for 
the Metropolis–Hastings–Green algorithm by exploiting numerical 
solutions to Hamiltonian dynamics. For observed sequence data Y and 
estimable model parameters θ = (θ1,… ,θk), this requires computing a 
number of derivatives of the observed sequence data likelihood ℙ (Y|θ) 
on top of already calculating ℙ (Y|θ), which can be computationally 
demanding by itself. The gradient ∇ℙ (Y|θ) is the collection of deriva-
tives with respect to all estimable model parameters

∇ℙ (Y|θ) = ( ∂
∂θ1

ℙ (Y|θ) ,… , ∂
∂θk

ℙ (Y|θ))
′
,

where the prime symbol denotes the transpose operator. As with com-
puting ℙ (Y|θ), a pruning algorithm can be used to simplify calculating 
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a single entry in ∇ℙ (Y|θ) through postorder traversal, but the 𝒪𝒪(NK) 
computational demands across all entries for HMC remain much higher 
than for standard transition kernels when K → N as for many clock 
models. That said, a linear-time algorithm for 𝒪𝒪(N)-dimensional gradi-
ent evaluation by complementing the postorder traversal with its 
corresponding preorder traversal renders these computations feasible 
on central processing units (CPUs)11. Additional development of novel 
massively parallel algorithms enables taking advantage of graphics 
processing units (GPUs) to obtain further speedups over the CPU 
implementation36.

We have developed and implemented into BEAST X a wide range of 
HMC transition kernels that have led to drastic improvements in param-
eter estimation efficiency (see the main text for results)7,9,11,13,24,26,27. 
Given the increased amount of sequence data and associated metadata 
to be analyzed in Bayesian phylodynamic inference, HMC transition 
kernels are essential building blocks that enable complex Bayesian phy-
lodynamic analyses in a reasonable amount of time. This is illustrated 
in the following section’s practical example, where the combination 
of a large number (11,351) of taxa from 256 discrete geographic loca-
tions (the upper limit in the current computational architecture and 
implementation in BEAGLE31) would be completely infeasible to analyze 
without the help of HMC.

Application to SARS-CoV-2
Figure 1 illustrates a variety of advances in BEAST X modeling and infer-
ence strategies as applied to the phylogeographic and phylodynamic 
analysis of SARS-CoV-2. Specifically, it focuses on phylodynamic analy-
ses of the Omicron BA.1 invasion in England2. Figure 1a reports effect 
size estimates for covariates in a GLM extension of discrete phylogeo-
graphic inference for the largest BA.1 transmission lineage identified by 
Tsui et al.2 (11,351 genomes). The phylogeographic inference involved 
two epochs33 to estimate separate covariate effect sizes in the expan-
sion and postexpansion phase, showing, for example, differences in 
dispersal out of Greater London and in contributions of mobility. The 
epoch-GLM discrete diffusion model was fit to a set of trees estimated 
using the Thorney BEAST approach37, inferring dispersal among 256 
lower-tier local authorities (LTLAs) in England. HMC inference was 
required to fit this high-dimensional diffusion model while integrating 
over some degree of missing data in the covariates, and the computa-
tion benefits tremendously from using GPUs31,36. In addition to effect 
size estimates illustrated here, Tsui et al.2 introduce a new estimate of 
relative predictor importance-based deviance measures. Figure 1b 
summarizes Markov jump estimates38 between the LTLAs during the 
expansion phase, showing dispersal from Greater London LTLAs (in 
blue) as well as from other LTLAs (in yellow). Figure 1c,d illustrates 
spatiotemporal projections of a maximum clade credibility summary 
of a continuous phylogeographic inference of the same large BA.1 
transmission lineage, including a mapping of the first half (Fig. 1c) 
and the complete expansion phase (Fig. 1d). This visualization was 
achieved using spread.gl30, a high-performance browser application 
that uses the kepler.gl framework to accommodate large-scale data. 
Fitting the RRW model in this analysis required HMC inference to effi-
ciently integrate over the branch-specific rates of diffusion22. Using 
standard Metropolis–Hastings kernels on the RRW branch rates does 
not complete MCMC burn-in in the same compute-time it takes HMC 
to deliver ESSs >100 across all 22,700 rate parameters from the con-
verged posterior distribution. Figure 1e,f represents estimates of trans-
mission dynamics using several tree generative priors. We compare 
doubling-time estimates for a subset of genomes representative for the 
expansion phase of the largest BA.1 transmission lineage (n = 1,000) to 
a genomic dataset representative for expansion of the Alpha variant in 
England (n = 976)39. This highlights an Omicron BA.1 doubling time that 
is about 3.5 times smaller compared with Alpha. We include estimates 
of effective population size (Ne) through time using a nonparametric 
coalescent model inferred from the set of empirical trees with 11,351 

tips, showing a roughly linear increase in log Ne in the expansion phase 
as opposed to roughly contant log Ne in the postexpansion phase. 
Finally, we provide comparative estimates of the effective reproduc-
tion number (Re) through time using an episodic birth–death sampling 
model fit to the same set of empirical trees9, showing a considerable 
decrease in Re after implementation of measures against the spread 
of Omicron in the UK.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data required to perform the analyses in Fig. 1 are available as XML 
input files for BEAST X via GitHub at https://github.com/beast-dev/
beast-mcmc/tree/master/examples/BEASTXRelease.

Code availability
By naming this major release BEAST X v10.5.0, we delineate our plat-
form from the related but independent BEAST 2 project40. The jump 
from BEAST v1.10.5 to BEAST X v10.5.0 facilitates best-practice seman-
tic versioning and clarifies continued active development. BEAST 
X is open-source under the GNU lesser general public license and 
available via GitHub at https://beast-dev.github.io/beast-mcmc for 
cross-platform compiled programs and https://github.com/beast-dev/
beast-mcmc for software development and source code. It requires Java 
version 1.8 or greater and the platform also depends on the BEAGLE 
high-performance phylogenetic likelihood library version ≥4.0. BEAST 
X interfaces with recent releases of the BEAGLE high-performance 
phylogenetic likelihood library31 to off-load computationally expensive 
calculations to multicore CPUs and GPUs on laptop, desktop and clus-
ter devices. These calculations include for the first time the preorder 
traversals36 necessary for linear-time evaluation of high-dimensional 
gradients of the sequence and trait data likelihoods. Documenta-
tion, tutorials and help are available at http://beast.community, and 
many users actively discuss BEAST usage and development in the 
‘beast-users’ GoogleGroup discussion group (http://groups.google.
com/group/beast-users).

References
31.	 Ayres, D. L. et al. BEAGLE 3.0: improved performance, scaling, and 

usability for a high-performance computing library for statistical 
phylogenetics. Syst. Biol. 68, 1052–1061 (2019).

32.	 Duchêne, S., Holmes, E. C. & Ho, S. Y. Analyses of evolutionary 
dynamics in viruses are hindered by a time-dependent bias in rate 
estimates. Proc. R. Soc. B 281, 20140732 (2014).

33.	 Bielejec, F., Lemey, P., Baele, G., Rambaut, A. & Suchard, M. A. 
Inferring heterogeneous evolutionary processes through time: 
from sequence substitution to phylogeography. Syst. Biol. 63, 
493–504 (2014).

34.	 Ferreira, M. A. R. & Suchard, M. A. Bayesian analysis of elapsed 
times in continuous-time Markov chains. Can. J. Stat. 36, 355–368 
(2008).

35.	 Polson, N. G., Scott, J. G. & Windle, J. The Bayesian bridge.  
J. R. Stat. Soc. Ser. B 76, 713–733 (2014).

36.	 Gangavarapu, K. et al. Many-core algorithms for high-dimensional 
gradients on phylogenetic trees. Bioinformatics 40, btae030 
(2024).

37.	 McCrone, J. et al. Context-specific emergence and growth of the 
SARS-CoV-2 Delta variant. Nature 610, 154–160 (2022).

38.	 Minin, V. N. & Suchard, M. A. Fast, accurate and simulation-free 
stochastic mapping. Philos. Trans. R. Soc. B 363, 3985–3995 
(2008).

39.	 Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 
lineage B.1.1.7 in the UK. Virus Evol. 8, veac080 (2022).

http://www.nature.com/naturemethods
https://github.com/beast-dev/beast-mcmc/tree/master/examples/BEASTXRelease
https://github.com/beast-dev/beast-mcmc/tree/master/examples/BEASTXRelease
https://beast-dev.github.io/beast-mcmc
https://github.com/beast-dev/beast-mcmc
https://github.com/beast-dev/beast-mcmc
http://beast.community
http://groups.google.com/group/beast-users
http://groups.google.com/group/beast-users


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-025-02751-x

40.	 Bouckaert, R. et al. BEAST 2: a software platform for Bayesian 
evolutionary analysis. PLoS Comp. Biol. 10, e1003537 (2014).

Acknowledgements
We thank the many developers and contributors to BEAST X, including 
A. Alekseyenko, D. Ayres, T. Bedford, F. Bielejec, E. Bloomquist,  
M. Karcher, G. Cybis, R. Forsberg, M. Gill, M. Hall, J. Heled, S. Hoehna,  
D. Kuehnert, W. Lok Sibon Li, G. Lunter, A. Magee, S. Markowitz,  
V. Minin, Á. O’Toole, J. Palacios, M. Defoin Platel, O. Pybus, B. Shapiro, 
K. Strimmer, M. Tolkoff, C.-H. Wu and W. Xie. We thank J. Tsui and M. 
Kraemer for sharing SARS-CoV-2 genomic data and metadata. We 
thank Y. Li for proving the spread.gl visualization for the SARS-CoV-2 
Omicron BA.1 invasion in England. This work was supported in 
part by the European Union Seventh Framework Programme for 
research, technological development and demonstration under 
grant agreement no. 725422-ReservoirDOCS and from the European 
Union’s Horizon 2020 project MOOD (grant agreement no. 874850). 
This work was supported in part by the Wellcome Trust through 
project 206298/Z/17/Z (ARTIC network). X.J. acknowledges support 
through Louisiana Board of Regents Research Competitiveness 
Subprogram, NSF grant DEB1754142 and NIH grants R01 GM072562 
and R01 AI153044. A.J.H. acknowledges support through NIH grant 
K25 AI153816 and NSF grants DMS 2152774 and DMS 2236854. M.A.S. 
acknowledges support through NIH grants R01 HG006139, U19 
AI135995, R01 AI153044 and R01 AI162611. P.L. acknowledges support 
by the Research Foundation – Flanders (‘Fonds voor Wetenschappelijk 
Onderzoek – Vlaanderen’, G005323N, G0D5117N and G051322N). 
A.R. acknowledges support from the Bill & Melinda Gates Foundation 
through grant OPP1175094, Pangea-II. G.B. acknowledges 
support from the Research Foundation – Flanders (‘Fonds voor 
Wetenschappelijk Onderzoek – Vlaanderen’, G098321N and 
G0E1420N), from the European Union Horizon 2023 RIA project LEAPS 

(grant agreement no. 101094685) and from the DURABLE EU4Health 
project 02/2023-01/2027, which is co-funded by the European 
Union (call EU4H-2021-PJ4) under grant agreement no. 101102733. 
G.W.H. acknowledges support through NIH grants T32 HG002536 
and F31 AI154824. We gratefully acknowledge support from NVIDIA 
Corporation and Advanced Micro Devices, Inc., with the donation of 
parallel computing resources used for this research.

Author contributions
All authors contributed to the methodological developments 
described. P.L. and Y.S. performed the analysis of the SARS-CoV-2 
dataset. G.B., X.J., A.J.H., P.L., G.W.H., A.R. and M.A.S. wrote the first 
draft of the paper. J.T.M., Z.Z. and A.J.D. provided edits to the paper.  
All authors approved of the final version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41592-025-02751-x.

Correspondence and requests for materials should be addressed to 
Andrew Rambaut or Marc A. Suchard.

Peer review information Nature Methods thanks Liang Liu and the 
other, anonymous, reviewer(s) for their contribution to the peer review 
of this work. Primary Handling Editor: Lin Tang, in collaboration with 
the Nature Methods team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02751-x
http://www.nature.com/reprints


Corresponding author(s):

Last updated by author(s):

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 
For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection

Data analysis

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy



Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Population characteristics

Recruitment

Ethics oversight

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization



Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions

Location

Access & import/export

Disturbance

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used

Validation



Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

Study protocol

Data collection

Outcomes

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:



No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Novel plant genotypes

Seed stocks

Authentication

Plants

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

Files in database submission

Genome browser session 
(e.g. UCSC)

Methodology

Replicates

Sequencing depth

Antibodies

Peak calling parameters

Data quality



Software

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures

Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI Used Not used

Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

Statistical modeling & inference

Model type and settings

Effect(s) tested



Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Graph analysis

Multivariate modeling and predictive analysis

This checklist template is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in 
the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/


	BEAST X for Bayesian phylogenetic, phylogeographic and phylodynamic inference

	Online content

	Fig. 1 Phylodynamic analysis of the SARS-CoV-2 Omicron BA.
	Table 1 Performance benchmarks of HMC transition kernels.




