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Abstract

Bayesian multidimensional scaling (BMDS) is a probabilistic dimension reduction
tool that allows one to model and visualize data consisting of dissimilarities be-
tween pairs of objects. Although BMDS has proven useful within, e.g., Bayesian
phylogenetic inference, its likelihood and gradient calculations require burdensome
O(N?) floating-point operations, where N is the number of data points. Thus,
BMDS becomes impractical as N grows large. We propose and compare two sparse
versions of BMDS (sBMDS) that apply log-likelihood and gradient computations
to subsets of the observed dissimilarity matrix data. Landmark sBMDS (L-sBMDS)
extracts columns, while banded sBMDS (B-sBMDS) extracts diagonals of the data.
These sparse variants let one specify a time complexity between N2 and N. Under
simplified settings, we prove posterior consistency for subsampled distance matri-
ces. Through simulations, we examine the accuracy and computational efficiency
across all models using both the Metropolis-Hastings and Hamiltonian Monte Carlo
algorithms. We observe approximately 3-fold, 10-fold and 40-fold speedups with
negligible loss of accuracy, when applying the sSBMDS likelihoods and gradients to
500, 1000 and 5,000 data points with 50 bands (landmarks); these speedups only
increase with the size of data considered. Finally, we apply the sSBMDS variants to:
(1) the phylogeographic modeling of multiple influenza subtypes to better under-
stand how these strains spread through global air transportation networks and (2)
the clustering of ArXiv manuscripts based on low-dimensional representations of
article abstracts. In the first application, SBMDS contributes to holistic uncertainty
quantification within a larger Bayesian hierarchical model. In the second, sSBMDS
approximates uncertainty quantification for a downstream modeling task.
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1 Introduction

Multidimensional scaling (MDS) is a dimension reduction technique that maps
pairwise dissimilarity measurements corresponding to a set of N objects to a con-
figuration of N points within a low-dimensional Euclidean space (Torgerson 1952).
Classical MDS uses the spectral decomposition of a doubly centered matrix derived
from the observed dissimilarity matrix to calculate the objects’ coordinates. While
classical MDS serves as a valuable data visualization tool, probabilistic extensions
further enable uncertainty quantification in the context of Bayesian hierarchical mod-
els. Oh and Raftery (2001) propose a Bayesian framework for MDS (BMDS) under
the assumption that the observed dissimilarities follow independent truncated nor-
mal probability density functions (PDFs). BMDS facilitates Bayesian inference of
object configurations in a manner that is robust to violations of the Euclidean model
assumption and dimension misspecifications (Oh and Raftery 2001). The key benefits
of'a Bayesian approach to MDS are that it provides uncertainty quantification for the
projection itself and conditional distributions that can be easily integrated with other
probability models, enabling fully model-based approaches to analyzing dissimilarity
data. For example, one may incorporate BMDS into hierarchical modeling frame-
works for Bayesian phylogeography (Bedford et al. 2014; Holbrook et al. 2021; Li
et al. 2023), clustering (Oh and Raftery 2007) and variable selection (Lin and Fong
2019).

Bayesian phylogeography uses molecular data from species such as viruses, bac-
teria or pathogens to probabilistically model their evolution over both time and space
(Lemey et al. 2009). For instance, one can reconstruct viral dispersion patterns to
better understand the way viruses spread within and between human populations. The
incorporation of BMDS within Bayesian phylogeography allows one to place dis-
similarity data between species into a low-dimensional spatial representation while
also considering their evolutionary dynamics from genetic data. Bedford et al. (2014)
simultaneously characterize antigenic and genetic patterns of influenza by combin-
ing BMDS with an evolutionary diffusion process on the latent strain locations. They
apply BMDS on hemmagglutination inhibition assay data to place the subtypes on a
low-dimensional antigenic map. Holbrook et al. (2021) implement a similar Bayes-
ian phylogenetic MDS model but perform phylogeographic inference on pairwise
distances arising from air traffic data. Additionally, Li et al. (2023) use phylogenetic
BMDS on pairwise distances stemming from hepaciviruses to infer the viral loca-
tions in a lower dimensional geographic and host space.

Unfortunately, BMDS is difficult to scale to big data settings; computing the
BMDS log-likelihood and gradient each have O(N?) complexity. Bedford et al.
(2014) partially circumvent this problem by assuming that the observed data fol-
low non-truncated Gaussian distributions, thereby avoiding the costly floating-point
operations necessary to evaluate the Gaussian cumulative density function (CDF) in
the truncated normal PDFs (2). However, there are benefits to using the truncated
normal distribution: it appropriately accounts for non-negative dissimilarities, and its
variance term is always less than that of its corresponding non-truncated normal dis-
tribution, resulting in more precise posterior inference. Holbrook et al. (2021) miti-
gate BMDS’s computational burden through massive parallelization using multi-core
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central processing units, vectorization and graphic processing units. They obtain sub-
stantial performance gains, but parallelization requires expensive hardware. In either
case, these models still scale quadratically in the number of objects. We therefore
develop a framework that reduces the time complexity to O(N) by inducing sparsity
on the observed dissimilarity matrix. We perform experiments with simulated data
and show that our sparse versions of BMDS (sBMDS) obtain significant speedups
while preserving inferential accuracy. We then illustrate how one may use sSBMDS
within a larger hierarchical model by extending the types of phylogeographical mod-
els mentioned above under sparse assumptions, implementing sSBMDS phylogenetic
frameworks on air traffic data to analyze the geographic spread of four influenza
subtypes. Additionally, we apply sBMDS to a collection of ArXiv paper abstracts
and perform post-hoc clustering on posterior samples of the low-dimensional embed-
dings. Using a “bagged estimator” approach, we obtain posterior probabilities over
cluster assignments.

In the following, we present two versions of sparse BMDS and prove that under
simplistic conditions, the posterior latent locations are consistent for subsampled dis-
similarity matrices (Sect. 2). In Sect. 3, we evaluate the empirical accuracy, sensitiv-
ity to model misspecification and computational performance of both methods. We
apply sBMDS to the phylogeographic modeling of influenza variants and verify that
we obtain similar migration rate estimates for both full and sparse BMDS models
(Sect. 3.2). In Sect. 3.3, we apply sBMDS to a dataset representing ArXiv paper
abstracts and recover the posterior probability that two manuscripts belong to the
same subject-matter category. We conclude by summarizing our findings and dis-
cussing future research directions (Sect. 4).

2 Methods
2.1 Bayesian multidimensional scaling

Bayesian multidimensional scaling (BMDS) (Oh and Raftery 2001) models a set of N
objects’ locations as latent variables in low-dimensional space under the assumption
that the observed dissimilarity measures follow a prescribed joint probability distri-
bution. To set notation: for A C R, let N4 (u,0?) denote the Gaussian distribution
truncated to 4; for k € N, let [k] = {1,2,. .., k}. Within BMDS, each observed dis-
similarity measure d,,,,/ is the posited latent measure J;, , plus a truncated Gaussian
error:

Spnsr ~ N(O,oo)((;:m’ao—z)v n 7é nlv nan/ € [N]v ()

where 67, = \/ Zfl):l (Tng — Tnrq)? is the Euclidean distance between latent loca-

tions x,,, x,» € RP, and N(-,-) represents the normal distribution. These assump-
tions yield the log-likelihood function
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m Onn — 6’277,’ ? 5;71’
(A, 0?) = 5 log(2m0?) — Z {(2(72) + IOgQ)(U)} 2)

n<n’/

where A = {0, } is the symmetric N x N matrix of observed dissimilarities,
m = N(N — 1)/2 is the number of dissimilarities, and ®(-) is the standard normal
CDF.

Many MCMC algorithms, ¢.g., Hamiltonian Monte Carlo (HMC) (Sect. 2.4) and
Metropolis-adjusted Langevin algorithm (MALA), use evaluations of gradients for
efficient state space exploration. For this model, we take the first derivative of the
log-likelihood function (2) with respect to a single row x,, of X, the N x D matrix of
unknown object coordinates to obtain the log-likelihood gradient function

p (05t = Onnt) &0y, /0) (%0 —Xw) ] _
Vxl(A, 0% =— Y + - == > 1
W €N, K o? mI)(OW/U)) Y ] W €N, 3)

n' #n n' #n

Here ¢(-) is the PDF of a standard normal variate, and r,,,,/ is the contribution of the
n/th location to the gradient with respect to the nth location.

The BMDS log-likelihood (2) and gradient (3) both involve summing ( ];] )

terms and require O(N?) floating point operations. Given the large number of calcu-
lations needed, they become computationally cumbersome as the number of objects
grows large. Therefore, we propose using a small subset of the data for likelihood and
gradient evaluations, namely the sparse BMDS methods (sBMDS).

2.2 Sparse likelihoods and their gradients

For each item #, let J,, x C [N] \ {n} be an index set. We consider sparse coupling
approaches resulting in log-likelihoods and log-likelihood gradients of the form

2 a 1 2 (6”1"/ — 6:7L’)2 6:m’
lp(A0?)==>" > 5 log(2mo®) + Hm s log @ 2 ) | @

=1 /
n n e J'n,Nv
!

and

2\ _
Vxplsp(A,0°) = — Z Trn/- )

n'€Jn, N

We reduce the computational complexity of BMDS by including a small subset of
couplings J,, n per object n, where |J,, x| < N. Here, we discuss two possible strat-
egies for choosing J,, . By a slight abuse of notation, we use [a, b] to refer to a closed
interval of either reals or integers, where the appropriate set should be obvious from
context. The first option is to extract B € [N — 1] off-diagonal bands of the observed
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dissimilarity matrix such that J, v = [max(1,n — B), min(N,n + B)|\{n} for
all n. The second approach is to choose L € [IN] objects called “landmarks” and
select each landmark’s dissimilarities from the remaining N — 1 objects, e.g.,
Jn.n = [N]\{n} for n € [L] and J,, y = [L] for n ¢ [L]. Essentially, this strategy
retains a rectangular subset of the observed dissimilarity matrix by extracting L col-
umns (rows) of the data. We note there is no loss of generality in taking the first n
indices as landmarks rather than an arbitrary set because one can relabel the object
indices without affecting the learned geometry. We refer to the first method as banded
sBMDS (B-sBMDS) and the second method as landmark sBMDS (L-sBMDS).
Alternative strategies for selecting index sets are possible, provided they satisfy
Assumption 1 (Sect. 2.3). For instance, our B-sBMDS model assumes distances are
measured on the real line and bands are defined as a contiguous interval. However,
one could explore other forms of banded matrices, e.g., by selecting any set of entries
in the distance matrix.

To highlight the difference, we consider a simplified scenario in which the num-
ber of objects is five, the latent dimension is two, the BMDS error variance o2 is
0.25, and the observed dissimilarities are equal to the latent dissimilarity measures
(Onn = 67,./). Given the distance and location matrices

0.00 1.35 253 099 1.85 059  0.71
135 0.00 1.54 0.76 0.50 —0.11 —0.45
A=|253 154 000 154 126 |, X=| 061 —1.82 |,
0.99 0.76 1.54 0.00 1.12 0.63 —0.28
1.85 050 1.26 1.12 0.00 —0.28 —0.92

we compare the SBMDS log-likelihood (Table 1) and gradient (Table 2) calculated
from couplings defined by B-sBMDS versus L-sBMDS.

For B-sBMDS, the number of couplings is the number of elements in B bands.
The relationship between the number of bands and number of couplings C is

C= Zle(N —b). We add one less coupling for each additional band. When the

Table 1 We extract the (n,n’) B/L B-sBMDS L-sBMDS
pair from the off-diagonals of

the observed and latent dis- Pairs (n, )
similarity matrices for banded 1 (1,2);(2,3): 3, 4); (4, 5) (1,2);(1,3); (1, 4); (1, 5)
sBMDS (B-sBMDS) versus the 2 +(1,3);(2,4);3,5) +(2,3);(2,4); (2,5
columns for landmark sSBMDS 3 +(1,4); (2,5) +@3,4);G,95)
(L-sBMDS) 4 +(1,5) +4,5)

Log-likelihood values

1 —0.885 —0.875

2 —1.490 —1.311

3 —1.743 —1.756

4 —1.969 —1.969

B/L refers to the number of bands (B) or landmarks (L), and the +
symbol indicates all couplings above are also included. The bottom
table shows the calculated log-likelihoods as the number of bands/
landmarks increases. Importantly, the bottom log-likelihoods are
equal for both sBMDS variants and correspond to the full BMDS
log-likelihood
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Table 2 We extract the (n,n’) pair from the observed and latent dissimilarity matrices to calculate the
sBMDS gradients

Banded sBMDS
Pairs (n, n’) Gradient
1 band 2bands 3 bands 4bands 1 band 2 bands 3 bands 4 bands
x1(1, 2) +(1,3) +@1,49) +(1,5 [-.010,017] [-.010,018] [—.005,134] [—.006,135]
x2(2,3);(2,1) +(2,49) +(@2,5) [.014,.011] [.275,.074] [.071, [.071,
—.468] —.468]
x3(3,4); 3,2) +@3,5); [—.003,013] [—.026,036] [—.026,036] [—.026,036]
G, 1)
x4(4,5);4,3) +&2) +@&1) [—.054, [—.315, [—.321,009] [—.321,009]
—.045] —.108]
x5(5, 4) +G,3) +65,2) + (5, 1) [.054,.038] [.077,.015] [.281,.557] [.281,.558]
Landmark sBMDS
Pairs Gradient
(n,n")
1 2 3 4 1 landmark 2 3 4
landmark landmarks landmarks landmarks landmarks landmarks landmarks
x1(1,2 = 5) [—.006,.135] [—.006,.135] [—.006,.135] [—.006,.135]
x2(2, 1) +(2,3 [.010,.017] [.071, [.071, [.071,
—9) —.468] —.468] —.468]
x3(3, 1) +3,2) + 3,4 [.000,.000] [—.003,006] [—.026,036] [—.026,036]

-5)
x4(4, 1) +4,2) +4,3) +4,5) [—.005,.117] [—.266,054] [—.266,047] [—321,009]

x5(5, 1) +(5,2) +(5,3) +(5,4) [.000,.000] [.204,.543] [.227,.519] [.281,.558]

On the left, the — symbol, as in (n,a — ¢), indicates pairs (n, a); (n, b); (n, ¢). For example, pair
(3; 4 — 5) means we include both pair (3, 4) and (3, 5). The + symbol indicates all couplings to the left
are also included, and [+, -] represents a vector. On the right is the gradient computed for each x,, of X
as function of the number of bands/landmarks. Extracting the entire column of a landmark point gives
the full BMDS gradient in RP whereas banded sSBMDS incrementally adds information to the row-wise

gradients. Importantly, the rightmost gradients are equal for both sSBMDS variants and correspond to
the full BMDS gradient

number of bands equals N — 1, we return to the full BMDS case. Using a subset of
the observed dissimilarity matrix reduces the burden of computing the BMDS likeli-
hood and gradient to O(N B). Similar arguments hold for L-sBMDS, the likelihoods
and gradients of which exhibit O(N L) time complexity.

For classical MDS, an analogous strategy to L-sBMDS already exists. In MDS,
the rate limiting step is the calculation of the top D eigenvalues and eigenvectors
froma N x N matrix. Silva and Tenenbaum (2004) propose applying classical MDS
to L landmark points, e.g., an L x N submatrix of the observed dissimilarity matrix,
and then following a distance-based triangulation procedure to determine the remain-
ing object coordinates. L-sBMDS uses the concept of randomly selecting L land-
marks as well, but integrates them into the BMDS framework, allowing inference on
the entire model. Raftery et al. (2012) approximate the likelihood of their network
data by taking a random subset of objects deemed to have no link, reducing the time
complexity from O(N?) to O(N). In the context of a very different network model,
they incorporate an array of covariates to model the probability of a link between
objects n and n’ while our model is simpler, using no outside information to aid in
determining locations in a latent space.

@ Springer



Sparse Bayesian multidimensional scaling(s) Page 7 of 31 12

2.3 Posterior consistency

For the following theoretical development, we consider the model

Opnt ~ N(O,M)((s:n’voj)v n#n', n,n' € [N], (6)

a generalization of (1) insofar as M can be any number within the interval (0, c0).
Let the latent locations X be sampled from a range of values in the interval /. The
posterior density function of the unknown parameters (X, I, 02, M) is proportional
to L(A|X, o2, M), the BMDS likelihood function of model (6), and the priors put on
each auxiliary parameter, e.g.,

p(X,1,0% M|A) < L(A, 0%, M|X) x p(X|I) x p(I) x p(o?) x p(M).  (7)
The marginal posterior density function of X is
p(X|A) = /p(X7 I,0% M|A)dI do? dM. ®)

We examine the posterior consistency of subsampled dissimilarity matrices under

simple conditions. Fixing some interval /, we sample points zy, ...,z NZ'}\'Jd‘N 1(0,1).
Let A* be the Euclidean distance matrix with entries ¢%,., = |z, — /| and d,,,,» be
the noisy observations sampled from the truncated normal model (6). We set a prior
on I, M and o2 that has compact support and is bounded away from 0 and infinity on
its support, e.g., Oh and Raftery (2001), Oh and Raftery (2007). In addition, we fix
in advance a collection of indices J,, y C [N]\{n} of observations to keep for each
object n, treating this choice as non-random in the following. Next, we make some
assumptions about which observations are kept.

Assumption 1 Fix K € N. Assume there exists a sequence {{xy} yen and a collec-

tion of partitions {Ggﬁg\?))}ﬁ;l of J,, n with the following properties:
1. Foralln € [N]andk € [K], |GV(| > ey.

2. Sayn,n’ € [N] are linked by an edge if there exists k(n), k(n') € [K] so that

[ N T MG UGS > iy )

Assume that the graph with these edges and vertex set [N] is a connected graph.
3. The sequence /¢ satisfies

i giN — 10
N log(N)2 o (10)
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Remark1 Weverify that Assumption 1 holds for L-sBMDS given L > ({n + 1)K land-
marksand L < N. Wecanthinkof? y asthenumberofretainedentriesinthesparsestrow

(up to a universal constant). Let £y = fg] so that it satisfies part 3 of Assumption 1.
For all n € [N],|Jn,n| > L and for objects n,n' € [N],|Jo v N Jp n| > L — 1.
Consider the partition fo%l)) = [LMJ + 1 Lﬁj]\{n} Then for any object
n,n' € [N], foj(\?)) U Gfllff]r\l,/)) = {L(k DLy g, B = G](\;C) is independent
of n,n' and of size % which satisfies part 1 of Assumption 1. Thus in the most con-
servative case, e.g., n € [L] and n' ¢ [L],

[ an 0w MG UGS = {1, on = Ln+ 1, LNGY|
L LK-1)

—(L-1)- =" -1

As aresult, | Jp n N Jn’,N\(GS,C](\?)) U G,(Ilf,(;\;l))ﬂ >4y when L> ({n + 1)K for

K > 1. Notably, the graph in part 2 of Assumption 1 is connected.

Remark 2 Similarly, we verify that Assumption 1 holds for B-sBMDS given
B> 2(ny+1 bands and B < N. Again, let (y = [g] so that it satis-
fies part 3 of Assumption 1. Under B-sBMDS, the ends of a distance matrix
have the fewest indices. To ensure that the size of each partition is at least {y at
these boundaries, let the number of partitions be K = L%J satisfying part 1

of Assumption 1. For all n € [N],|J,,n| > B and for two consecutive objects
(n<n') €[N],|Jo.n N Jy n| > B— 1. To remove the minimal number of com-

mon indices between two consecutive objects, let G(k(")) {n+1,.,n+4Ly} s0
that |G7(1}C \ Cn. Then, G, k(n)) u G n)) ={n,n'+1,..,n +{N} and the
cardinality of the intersection is ZN + 1. Flnally,

T O T ANGEE UGG > [{n! + 1, coyn + BN + 1,y + €y}
>|{n' +iy+1,...,n+ B} >(B-1)—ly
because we remove { elements from the union containing at least B — 1 elements.

w NG U G > 0y and we ob-
tain a connected graph, fulﬁlllng part 2 of Assumptlon 1 .

Under Assumption 1, we have the following posterior consistency result.

Theorem 1 Fix 0 < a < 0.1 and K € N. Let the sequences {J, v}, {GSLITJ(\;L))} and
{n} satisfy Assumption 1. Let ey = 5" "1. Let (z (N), e xj(VN))i'z'vd'NI(O, 1)
and let {(5m, Yi<n<w<n be sampled from model (6). Finally, let
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(ng), . :EI(VN)) ~ p(~|{(5£L]Z,)}n/€JmN) be sampled from the associated marginal

posterior distribution of the model. Then there exists C' > 0 so that the event
{n € [N, |2 — 27| < Cen} (11)

occurs asymptotically almost surely.

Proof See Appendix A. i

Theorem 1 establishes posterior consistency for latent locations estimated from a
subsampled dissimilarity matrix as we are able to recover the estimated latent loca-
tions 5c$LN ) up to an additive error of O(ey ) relative to the true latent locations x&LN ).
Intuitively, each observed distance constrains the feasible location of a point, and

with J,, y such distances, the uncertainty in its position concentrates to a ball of
radius (’)(J,,Z %2) Under Part 1 of Assumption 1, every point satisfies J, v > {n

with {5 — o0, so the worst-case uncertainty scales as O(@&l/ 2). Theorem 1 formal-

_ p—0.54«
= EN

izes this heuristic by showing posterior concentration at rate €y , match-

ing the K&l/ 2, Thus, as long as the number of observations per point grows with the
sample size, the feasible regions shrink asymptotically, yielding consistent estimators
of latent positions. Our result parallels the theoretical guarantees of landmark MDS
(Silva and Tenenbaum 2004) but in a Bayesian setting. We acknowledge that the
main limitation of this proof is the assumption that we have one-dimensional latent
objects. See Sect. A.4 for a short discussion of how similar results may be obtained
in fixed dimensions greater than 1.

2.4 Bayesian computation

Bayesian hierarchical models under the BMDS framework have previously been fit
using MCMC algorithms such as Metropolis-Hastings (MH) (Metropolis et al. 1953;
Hastings 1970; Oh and Raftery 2001; Bedford et al. 2014) and HMC (Neal 2012;
Holbrook et al. 2021). In the following, we experiment with MH and HMC to per-
form posterior inference with the sSBMDS models.

Let 0 be the random variable of interest and 7 () the target distribution. Under
MH, a new candidate 6* is sampled from a proposal distribution centered at the value
of the current iteration s, ¢(0*|0(*)). One then accepts the candidate with probability

m(0*)a(0'16%)

0*10)) = min |1, — |
IO = min L@ g 67760

(12)

In the BMDS model (1), the parameters of interest are the latent locations X and the
error variance o2, and—within a larger Metropolis-within-Gibbs scheme—the target
distributions of interest are their respective conditional posterior distributions.
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For our MH-based experiments, we jointly draw each candidate object’s latent
location x}, from the normal proposal distribution, N ('), 72), in which the proposal
standard deviation 7 is a tuning parameter. In practice, we find it beneficial to adjust 7
in a manner that satisfies the diminishing adaptations criterion of Roberts and Rosen-
thal (2001). Specifically, the acceptance ratio is the number of acceptances in a given
sample bound. If the acceptance ratio exceeds the target acceptance ratio, we multi-
plicatively increase 7 by (1 + min(0.01, 1/+/s — 1)); otherwise we multiplicatively
decrease 7 by (1 — min(0.01,1/y/s — 1)).

For BMDS and its sparse variants, the dimension of the state space grows with the
number of objects. Because MH typically breaks down in high-dimensions, we also
consider HMC to infer the latent locations. HMC allows one to generate a Markov
chain with distant proposals that nonetheless have a high probability of acceptance.
It combines a fictitious momentum variable, P, along with a position variable to
create a Hamiltonian system from which we compute the trajectories necessary for
state space exploration. The position variable represents the parameters of the target
distribution, so in the context of our model, we let the position variable be the latent
locations X. The Hamiltonian function is

H(X,P)=U(X) + K(P) (13)

where U(X) is the potential energy defined as the negative log target density, and
K (P) is the kinetic energy defined as K (P) = tr(P”P)/2. The partial derivatives of
the Hamiltonian dictate how P and X change over time ¢:

dX OH(X,P) _  dP —0H(X,P)

aX _ a _ - 2y 14
dt opP Tt X Vxt(A, ) (14)

For computer implementation, these equations are discretized over time using some
small stepsize e. We follow Neal (2012) and implement the leapfrog method to
numerically integrate Hamilton’s equations (14). We tune the stepsize in the same
way we change the proposal standard deviation in the adaptive MH algorithm. To
propose a new state, we sample an initial momentum variable Py and numerically

integrate Hamilton’s equations with initial state, (X*), P). We then accept the pro-
posed state, (X*,P*), according to the Metropolis-Hastings-Green (Green 1995;
Geyer 2011) probability of

min |1, exp(—H (X*,P*) + H(X(s),PO))} = min {1, exp(~U(X*) + U(X®) — K(P*) + K(Po)|.(15)

Measured on an iteration by iteration basis, HMC allows for faster exploration of
state spaces, especially in higher dimensions, compared to MH (Neal 2012; Beskos
et al. 2013). However, HMC is computationally more expensive because it requires
the gradient of the target function within every iteration of the leapfrog method.
Recall that these gradient evaluations scale O(N?) for BMDS. If we want to learn the
BMDS error variance o2 as well, we again follow the adaptive MH algorithm, draw-
ing a candidate o2* from a truncated normal proposal distribution with the current
iteration’s o2(*) as the mean and a standard deviation with the same adaption scheme
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as described above. We account for the asymmetric proposal distribution within the
MH acceptance probability (12).

3 Results

We explore the accuracy of full and sparse BMDS as well as the computational effi-
ciency of all models in the context of the MH and HMC algorithms. The code for
this project is available on Github (https://github.com/andrewjholbrook/sparseBMD
S). For visualization, we use the ggplot2 (Wickham 2016) package in R (R Core
Team 2023).

3.1 Simulation studies

For a full Bayesian analysis, we put a D-dimensional multivariate normal distribution
with mean 0 and diagonal covariance matrix A as the prior for x,,, independently
for n =1,...,N. The prior for the BMDS error variance ¢ is an inverse gamma
with rate a and shape b. One can define hyperpriors for A, a, b, but we assume those
parameters are fixed and known in this section. For our simulations, we set A equal to
the identity Iy, a = 1 and b = 1 so that x,, ~ N (0, 1) and 02 ~ IG(1,1). To create
the observed dissimilarity matrix A = {,,,,» }, we add i.i.d. noise using a truncated
normal distribution with mean 0 and variance 02, to a “true” distance matrix. For

the “true” distance matrix, A(t74¢) = {50}y e generate a N x 2 “true” location
matrix X from standard normal distributions and use X to calculate the Euclidean

distance between pairs (n,n’).

3.1.1 Accuracy

We test the accuracy of the sSBMDS models by comparing the simulated “true” dis-
similarities to those obtained from HMC using the SBMDS posteriors and gradients.
Given S iterations, we calculate the mean of the mean squared error ( MSE ) as
MSE = L 3% Zmﬁn,(é*(s) — 5UrueN)2 where 67(%) is the Euclidean distance

nn’ nn’ nn’
calculated from the inferred locations of object 7 and object n’ at iteration s, 60+

is the “true” Euclidean distance, and m = N (NN — 1) is the number of dissimilarities.
We compare distances instead of locations because the locations are not identifiable
under distance preserving transformations. For computational convenience, when the
number of objects is greater than 1,000, we randomly sample 1,000 distances to cal-
culate MSE . We set 04, to either 0.1, 0.2, 0.3 or 0.4 to change noise levels and run
110,000 iterations, discarding the first 10,000 as burn-in and retaining every 100th
iteration. We establish the initial conditions of the latent locations within HMC from
classical MDS output.

Figure 1 plots MSE as function of the number of bands for data with 10, 100
and 1,000 data points at varying levels of noise (see Appendix B, Fig. 12 for land-
mark results). Likewise, Fig. 2 plots MSE as function of the number of bands/

@ Springer


https://github.com/andrewjholbrook/sparseBMDS
https://github.com/andrewjholbrook/sparseBMDS

12 Page 12 of 31 A. Sheth et al.

Accuracy with truncated normal noise
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Fig. 1 The mean of the mean squared error (MSE) across all distances using 1 to 10 bands for 10 data
points and 1 to 20 bands for 100 and 1000 data points. We estimate Euclidean distances from the in-
ferred locations obtained using an adaptive Hamiltonian Monte Carlo algorithm under banded sparse
Bayesian multidimensional scaling (B-sBMDS). ofme is the variance component of the truncated
normal noise centered at 0 added to the “true” distance matrix such that o¢rye corresponds to the
BMDS error standard deviation o

Accuracy with truncated normal noise
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Fig. 2 The mean of the mean squared error (MSE) across 1000 distances, randomly sampled from
distance matrices with 10,000 data points. We estimate Euclidean distances from the inferred locations
obtained using an adaptive Hamiltonian Monte Carlo algorithm under both sparse Bayesian multidi-
mensional scaling (sBMDS) variants, banded sBMDS (B-sBMDS) and landmark sBMDS (L-sBMDS)
with 1 to 20 bands/landmarks. afme is the variance component of the truncated normal noise centered
at 0 added to the “true” distance matrix such that o¢rye corresponds to the BMDS error standard

deviation o

landmarks for data with 10,000 data points under B-sBMDS and L-sBMDS at differ-
ent noise levels. In both figures, all the plots have identifiable elbows, demonstrating
that a small number of bands/landmarks is sufficient to achieve low error. While we
need more bands for noisier data, the amount is still modest compared to the number
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of objects. Interestingly, we detect an elbow earlier for L-sBMDS than B-sBMDS;
L-sBMDS recovers accurate pairwise relationships more efficiently than B-sBMDS.
We visually see this difference in Fig. 3. In this simulation, we generate 1000 data
points using the same sampling scheme and color-code the x-axis of the “true” loca-
tions. After running 110,000 HMC samples, we plot the Procrustes-aligned mean of
the inferred latent locations from B-sBMDS and L-sBMDS using 5 and 10 bands/
landmarks. From Fig. 3, we observe that while L-sBMDS maintains the integrity of
the latent locations, B-sBMDS rapidly loses its accuracy as noise increases for 10
bands and is no longer accurate for 5 bands.

3.1.2 Sensitivity to model misspecification

To observe how the sparse variants behave under model misspecifications, we explore
two possible situations: 1) a mismatch between the true dimensionality and that spec-
ified by the scientist and 2) heavy-tailed, rather than truncated normal, noise. For case
1, we vary the dimension of the “true” location matrix from 2 to 10 while fixing the
embedding dimension to 2 and the truncated Gaussian noise variance 02, to 0.2.
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Fig. 3 Procrustes-aligned means of the inferred locations across 100,000 iterations under the B-sB-
MDS and L-sBMDS frameworks when the number of bands/landmarks is ten and five. The number
of data points is 1000. We simulate the latent locations from a two-dimensional standard normal dis-
tribution and assign a color according to their x-coordinate. afm . 1s the variance component of the
truncated normal noise centered at 0 added to the “true” distance matrix such that o¢rve corresponds
to the BMDS error standard deviation o
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As expected, MSE decreases as the true underlying dimensionality approaches the
embedding dimension. Full BMDS and B-sBMDS with 20 bands are more robust to
dimension misspecification than classical MDS, and the accuracy for B-sBMDS with
20 bands closely matches that of full BMDS (Fig. 4).

For case 2, we assume a correctly-specified-dimensional Euclidean space, but add
i.i.d log-normal noise to the “true” distance matrix. We bootstrap the MSE across
all distances from 100 data points, a 100 times and plot the mean of MSE along
with error bars representing + the standard deviation of MSE . Figure 5 demon-
strates that, even with heavy-tailed data, both sparse variants achieve comparable

MSE s to full BMDS’s at a low number of bands/landmarks. In both cases, we
observe that B-sBMDS seems to be less sensitive to model misspecification than
L-sBMDS. We further explore the sensitivity of our sparse methods to modeling
assumptions in Appendix B, specifically the prior choice (Fig. 15), the number of
bands/landmarks relative to dimensionality (Fig. 16) and the assumed likelihood for
the dissimilarities (Fig. 17).

3.1.3 Computational performance

To better understand the computational benefits of the sSBMDS variants, we first cal-
culate the log-likelihood and log-likelihood gradient using B-sBMDS and L-sBMDS
for a 10,000 by 10,000 Euclidean distance matrix. Recall that the number of cou-
plings decreases per additional band/landmark. As a result, we see a parabolic-like
relationship between evaluation time (in seconds) and the number of bands/land-
marks (Fig. 6). If we were to plot the number of couplings vs seconds per evaluation,
we would observe linear associations instead. When the number of bands/landmarks

N =100 N = 1000
wn 8 8
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o
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10 8 6 4 2 10 8 6 4 2

True underlying dimensionality

Fig. 4 The mean of the mean squared error (MSE) across all distances using 20 bands/landmarks for
100 and 1,000 data points. We vary the dimension space of the “true” latent locations while fixing the
latent dimensionality to two. We estimate Euclidean distances from the inferred locations obtained
using an adaptive Hamiltonian Monte Carlo algorithm under the B-sBMDS, L-sBMDS and full BMDS
frameworks. Additionally, we compare the mean MSE across all distances from the inferred locations
using classical MDS
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Accuracy with log-normal noise
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Fig. 5 The average mean of the mean squared error (MSE) across all distances from 100 data points
evaluated at intervals of 10 bands/landmarks, from 10 to 100, repeated 100 times. The dot is the aver-
age mean of MSE, and the error bars are + one standard deviation away from this mean. We estimate
Euclidean distances from the inferred locations obtained using an adaptive Hamiltonian Monte Carlo
algorithm under both sparse Bayesian multidimensional scaling (sBMDS) variants, banded sBMDS
(B-sBMDS) and landmark sBMDS (L-sBMDS). When the number of bands (landmarks) equals 99,
we return to full BMDS. afme is the variance component of the log-normal noise centered at 0 added
to the “true” distance matrix such that the distribution of the observed distance matrix has heavy-tails
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Fig. 6 Time elapsed to calculate the sparse BMDS (B-sBMDS and L-sBMDS) likelihoods (cyan) and
gradients (red) as a function of the number of bands/landmarks when the number of data points is
10,000. The seconds per evaluation at 9999 bands/landmarks correspond to the time it takes to calcu-
late the full BMDS likelihoods and gradients. The parabolic curve is due to the number of couplings
decreasing per additional band/landmark, causing the differences in computational time to reduce as
well. If we plot the number of couplings vs seconds per evaluation, we would observe strictly linear
associations

is 9,999, we return to the full case. We observe likelihood (gradient) speedups of
457-fold (773-fold), 91-fold (71-fold), 7-fold (10-fold) and 1.3-fold (1.3-fold) for
5, 50, 500 and 5000 bands (landmarks); there appears to be negligible time differ-
ences between B-sBMDS and L-sBMDS. Figure 7 emphasizes this correspondence
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Fig. 7 Time elapsed to calculate the banded sparse Bayesian multidimensional scaling (B-sBMDS)
likelihood and gradient using B bands as a function of the number of data points

between speedups and number of bands, demonstrating the performance gains using
a small number of bands relative to the number of objects. We observe approximately
3-fold, 10-fold and 40-fold speedups when applying the SBMDS likelihoods and gra-
dients to 500, 1,000 and 5,000 data points with 50 bands/landmarks. We only scale
up to 50 bands because these are reasonable band counts to achieve high accuracy
(Figs. 1 and 2). We see similar patterns for landmarks in Fig. 13 (Appendix B).

To compare computational performances, we set oy = 0.2, a value that allows
us to establish accurate results while obtaining high acceptance probabilities. We fix
the number of bands/landmarks to 10 based on the findings from both Fig. 1 and 12,
which confirm that this number ensures high model accuracy when o4, = 0.2 and
N < 1,000. We then conduct MH and HMC under the full BMDS, B-sBMDS, and
L-sBMDS models. For a fair comparison, we run all chains until the minimum effec-
tive sample size (ESS) is at least 100. ESS is a function of asymptotic auto-correla-
tion, ESS = H_Qz#wm, where p; is the autocorrelation between samples separated

t=1""

by a lag of ¢ timesteps and S is the length of a time series input. We calculate ESS
using the coda package (Plummer et al. 2006) in R. We define efficiency as the
minimum ESS per hour and take the natural log of it to allow comparison across
scales. Figure 8 compares efficiency across the three models and two MCMC algo-
rithms. The sSBMDS variants under HMC outperform the others even in moderately
high dimensions. MH begins to break down as the number of data points increases
because, while it is computationally faster than HMC, the large dimension of the
state space prevents efficient exploration, leading to high auto-correlation and low
ESS values.

3.2 Analysis of global influenza

When incorporated into a larger Bayesian hierarchical model, sBMDS provides
dimension reduction that propagates and accounts for total model uncertainty. To
demonstrate the robustness and applicability of our sparse frameworks, we inte-
grate them within a Bayesian hierarchical model for analyzing the global spread of
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Fig. 8 Computational performance measured as the logarithm of the minimum effective sample size
(ESS) per hour across different frameworks and number of data point. In the legend, the half before
the slash corresponds to the model type. “Full” is the BMDS model; “B-sBMDS” (banded sBMDS)
and “L-sBMDS” (landmark sBMDS) are the sparse models using 10 bands/landmarks. The latter half
explains the MCMC algorithm used for posterior inference. HMC abbreviates for Hamiltonian Monte
Carlo and MH for Metropolis-Hastings

influenza. Every year seasonal influenza affects millions of adults, resulting in about
140,000 to 710,000 influenza-related hospitalizations in the United States alone
(Rolfes et al. 2018). The virus’s ability to constantly evolve makes understanding
its viral patterns so important for managing prevalence. The use of easily accessible
mobility data can improve the readiness in which we learn about viral epidemics.
Holbrook et al. (2021) apply the BMDS framework to a phylogeographic analysis
of the spread of influenza subtypes through transportation networks. They analyze
1,370, 1,389, 1,393 and 1,240 samples of type HIN1, H3N1, Victoria (VIC) and
Yamagata (YAM), spanning 12.9, 14.2, 15.4 and 17.75 years, respectively. To scale
BMDS to data of this size, they implement core model likelihood and log-likelihood
gradient calculations on large graphics processing units and multi-core central pro-
cessing units. Unfortunately, such an approach requires time-intensive coding and
access to expensive computational hardware. We employ a similar Bayesian hierar-
chical model, applying the same highly structured stochastic process priors but use
sBMDS to transform to a latent network space. We are interested in whether under
sBMDS we can accurately and efficiently infer the subtype-specific rates of dispersal
across the latent airspace for the four influenza strains.

Our data consists of pairwise “effective distances” (Brockmann and Helbing 2013)
between countries, which inversely measures the probability of traveling between air-
ports. More trafficked airports have a shorter “distance” and thus a higher chance of
disease transmission. Effective distances are better at predicting disease arrival times
and spread compared to geographical distances because they incorporate the underly-
ing mobility network (Brockmann and Helbing 2013). For each influenza subtype,
we apply sBMDS to their air traffic data with the following priors for the unknown
parameters, X,, 02, and hyperparameter ,,. For strain v, the prior on the viral latent
locations X,, follows a multivariate Brownian diffusion process along the tree

@ Springer



12 Page 18 of 31 A. Sheth et al.

Xy ~ MN(py,Vg,, Xy), (16)

in which p, is the N x D mean matrix, Vg, is the N X N row covariance matrix
calculated from a fixed tree G,, and X, is the D x D column covariance matrix,
independently for v = 1, ..., 4. For viral diffusion, 33,, describes how the virus’s loca-
tion in geographic space covary over lineages. In addition, we assume a priori

¥ 1 ~ Wishart(dy, To) (17)

o, ~ Gamma(l,1). (18)

dy is the degree of freedom set as the dimension of the latent space and T is the
rate matrix fixed as Ip in our model. The trace of 3, provides the instantaneous rate
of diffusion and is of chief scientific interest. One can think of spatial variance as how
much the virus diffuses in a geographic dimension, so by summing up the variance in
each dimension, we can understand the total spread of a virus across space in a given
moment. We want to accurately infer the trace of 3, with our phylogenetic SBMDS
model trained on a latent airspace. We implement the adaptive HMC algorithm to
recover the viral latent locations along with adaptive MH updates on the BMDS
precision parameter, 1/02, and Gibbs updates on 3, ! We let the latent dimension
be six as Holbrook et al. (2021) recommended from 5-fold cross-validation. We find
20 leapfrog steps to be adequate as we vary the number of bands/landmarks to 50,
100 and 200.

3.2.1 Accuracy

For each subtype and model, we run 120,000 iterations, burning the first 20,000 and
saving every 100th iteration. Figure 9 plots the posterior distributions of the strain-

Inferred diffusion rates
Full/HMC B-sBMDS/HMC
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Fig. 9 Posterior distribution of strain-specific diffusion rates inferred from 6-dimensional Bayesian
phylogenetic multidimensional scaling with effective world-wide air traffic space distances for data.
Full/HMC refers to the use of the full likelihood and gradient whereas B-sBMDS/HMC uses 50 bands
to compute the sparse banded likelihood and gradient for inference within the Hamiltonian Monte
Carlo algorithm

@ Springer



Sparse Bayesian multidimensional scaling(s) Page 19 of 31 12

specific diffusion rates inferred from the full (left) and banded sparse (right) model.
We successfully capture the relative distributions for the B-sBMDS using 50 bands,
but note that the posterior modes are slightly off. When we increase the number
of bands to 200 (Fig. 14), the distributions appear identical. For Fig. 10, we apply
sBMDS with 50 bands to the HIN1 air traffic data and use Procrustes alignment to
account for rotation and reflection invariance across MCMC iterations. Since our data
has multiple taxon IDs per country, we calculate the mean of the Procrustes-aligned
latent locations for each country, yielding a country-level centroid per iteration. We
then plot the first two latent dimensions. Figure 10 demonstrates that we obtain a rea-
sonable map; countries in the same continent group together, and within continents,
countries with more air traffic are more centrally located. Moreover, the posterior
spread of the centroids across iterations provides a measure of uncertainty, revealing
both the strength of clustering and the variability in each country’s inferred position.
Using the textmineR package (Jones 2021) in R, we compute the Hellinger dis-
tance between the strain-specific posterior distributions of the squared effective dis-
tance per year from the full and sparse methods (Table 3). As expected, the Hellinger
distance decreases with more bands.

3.2.2 Computational performance

We measure efficiency speedups across the four influenza subtypes as the ratio of ESS
per hour between the full and sparse versions. From Table 3, we generally observe
that B-sBMDS is more efficient than L-sBMDS, which matches our previous find-
ings (Fig. 8). The efficiency speedup decreases with more bands, but is still three
times faster for a more than sufficient band count of 200.
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Fig. 10 The first two dimensions of the inferred latent locations for each country using a 6-dimensional
sparse Bayesian phylogenetic multidimensional scaling with 50 bands on the HIN1 air traffic data.
The plotted latent locations are the country-level Procrustes-aligned posterior means across taxon from

2,000 MCMC samples obtained after thinning
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Table 3 We compare the strain-specific posterior distributions of the inferred diffusion rates from the full
and sparse BMDS methods

B-sBMDS

B Hellinger distance Average efficiency speedup (min, max)
50 0.024 5.99 (5.58, 6.52)

100 0.021 4.06 (3.99, 4.14)

200 0.019 2.81(2.76, 2.86)

L-sBMDS

L Hellinger distance Average efficiency speedup (min, max)
50 0.024 5.22 (4.35,5.63)

100 0.023 3.83 (3.69, 3.90)

200 0.022 2.97 (2.55,3.52)

We calculate Hellinger distance between the posterior densities obtained using sparse Bayesian
multidimensional scaling (sSBMDS) and BMDS. Efficiency speedup is the ratio of effective sample size
per hour between the full and sparse BMDS versions. We take the average efficiency speedup across the
four influenza subtypes

3.3 Cluster analysis of ArXiv articles

We explore the utility of sSBMDS for approximating posterior uncertainty in down-
stream tasks by applying cluster analysis to a collection of ArXiv paper abstracts.
Using the arxivscraper package (Sadjadi 2017) in Python, we scrape articles
posted on ArXiv from December 2017 to March 2024 across four subject areas:
mathematical logic (math.LO), applied physics (physics.app-ph), statistics/machine
learning (stat. ML) and economics (g-fin.ec). Our final dataset includes 9,308 articles
with 1,411 related to math, 1,838 to physics, 5,361 to statistics and 698 to econom-
ics. We extract each paper’s abstract and embed it into a 768-dimensional numerical
vector using SentenceTransformers (Reimers and Gurevych 2019) under the
all-mpnet-base-v2 model (Song et al. 2020) in Python. This large language
model produces sentence-level embeddings that capture semantic similarity; there-
fore, abstracts with similar content yield similar embeddings. To form an observed
dissimilarity matrix, we compute the pairwise cosine dissimilarities between embed-

dings,e.g, 1 — cos (x, X, ) =1 — % forx,,, x,» € RP. Cosine dissimilarity

is appropriate for textual data, as it emphasizes directional similarity over magnitude.

’

We apply B-sBMDS to this 9,308 by 9,308 observed distance matrix using 50,
100, 500, 1,000 and 2,000 bands and obtain the posterior samples of the latent loca-
tions in a 2-dimensional space. We use an adaptive HMC algorithm with 20 leapfrog
steps to recover the latent locations. We keep every 100th iteration and run enough
iterations such that the ESS approximates the number of thinned samples, indicating
“near-independence” among samples. To incorporate the uncertainty encoded in the
sBMDS posterior samples, we implement a “bagged estimator”-style algorithm. We
randomly draw S iterations from the joint posterior of the latent locations and apply
hierarchical density-based spatial clustering of applications with noise (HDBSCAN)
to each iteration using the dbscan package (Hahsler et al. 2019) in R. DBSCAN
(Ester et al. 1996) is a non-parametric clustering algorithm that groups points into
dense regions based on a user-defined radius parameter € and a minimum number of
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Fig. 11 Convex cluster hulls for five posterior samples of the inferred latent locations using hierarchi-
cal density-based spatial clustering (HDBSCAN). The inferred locations are estimated from a 2-di-
mensional B-sBMDS framework using 500 bands and an adaptive Hamiltonian Monte Carlo (HMC)
algorithm. The convex hulls are plotted on the posterior mean of the inferred locations across 1,000
iterations, and points outside a hull are considered noise. The ArXiv subject of a cluster is assumed by
the most frequent ArXiv category among its members

Table 4 Accuracy as the number of bands increases using hierarchical density-based spatial clustering
(HDBSCAN) on 200 randomly sampled inferred latent locations. The inferred locations are estimated
from a 2-dimensional B-sBMDS framework and an adaptive Hamiltonian Monte Carlo (HMC) algorithm.
Note that the number of clusters should be 4. HDBSCAN is a non-parametric clustering algorithm and
therefore the number of clusters is predicted. Classification error is the proportion of articles whose ArXiv
subject label does not match the majority subject label of their assigned cluster, and CI is the credible
interval

Band Mode number of clusters Mean number of noise points Mean classification error (95% CI)

50 2 3975 0.226 (0.111, 0.315)
100 3 2954 0.094 (0.038, 0.171)
500 4 1380 0.051 (0.041, 0.061)
1000 4 1248 0.038 (0.031, 0.045)
2000 4 1009 0.034 (0.031, 0.037)

neighbors. Points within a dense region are assigned to the same cluster, while points
in low-density regions are labeled as noise. HDBSCAN (Campello et al. 2015) per-
forms DBSCAN for various € values and integrates the results to give the most stable
output. By applying HDBSCAN, a bounded deterministic function, to the posterior
draws of the latent locations from sSBMDS, we induce a posterior distribution over the
cluster assignments (Christensen et al. 2011).

Figure 11 visualizes the results of HDBSCAN applied to five posterior samples
of the latent space plotted on the posterior mean of the latent locations. We set the
minimum number of neighbors to 40. Table 4 reports clustering accuracy across band
settings. Each cluster is assigned a subject label based on the most frequent ArXiv
category among its members. Classification error is the proportion of articles whose
ArXiv subject label does not match the subject label of their assigned cluster. We
calculate the mean classification error across clusters and note that 500 bands provide
a good balance between accuracy and computational cost.
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We obtain clustering labels for each article as indirectly induced by uncertainty in
the sSBMDS embeddings. Across the S iterations, we compute a co-clustering matrix
that estimates the posterior pairwise probability that two articles belong in the same
cluster. This matrix can be used for subsequent analyses such as consensus cluster-
ing. The combination of sSBMDS with HDBSCAN provides an example of using a
deterministic function on the state space from a sparse Bayesian embedding model to
approximate uncertainty in post-hoc inference.

4 Discussion

We present two methods for subsetting the observed dissimilarity data: banded sparse
BMDS (B-sBMDS) and landmark sparse BMDS (L-sBMDS). We show that both
sparse methods obtain accurate results at low band/landmark counts even with noisy
data. Moreover, combining HMC with sBMDS proves effective in inferring thou-
sands of latent locations. We successfully integrate the sBMDS variants within a
Bayesian hierarchical model and demonstrate how posterior samples from sBMDS
can be combined with deterministic algorithms to approximate uncertainty in down-
stream tasks.

Based on our experiments, we recommend B-sBMDS as the default choice, since
it is more robust to model misspecifications. For example, in our influenza appli-
cation, in which the Euclidean assumption is violated, B-sBMDS yields a slightly
smaller Hellinger distance than L-sBMDS (Table 3). However, when minimizing
the number of dissimilarities is critical, L-sBMDS can be highly effective in favor-
able settings such as (i) the latent dimension is well specified, (ii) the noise distribu-
tion is close to Gaussian, and (iii) the dissimilarities can be well approximated by a
Euclidean embedding. In such cases, L-sBMDS achieves higher accuracy with fewer
landmarks (Figs. 2, 3), leading to greater speedups compared to B-sBMDS. Thus,
the computational efficiency of L-sBMDS comes at the price of reduced robustness,
making B-sBMDS the safer default across a wide range of applications.

Our simulations show that sSBMDS performs well under misspecified noise, e.g.,
log-normal noise, which is a heavily skewed and heavy-tailed distribution (Fig. 5).
Possible extensions to our work include the use of different noise distributions on the
observed dissimilarities (Fig. 17). For example, Bakker and Poole (2013) employ
Bayesian metric MDS, assuming the observed dissimilarities come from log-normal
distributions. While beyond the scope of this paper, sSBMDS could also be applied
within a generalized BMDS framework (Zhang et al. 2025), which accommodates
non-Gaussian errors and diverse dissimilarity metrics. As these distributions still
have O(N?) time complexity, sSBMDS could improve the computational perfor-
mance across a wider range of dissimilarity data. Another promising direction is the
application of our sparse methods within non-Euclidean latent spaces, as explored in
Liu et al. (2024). For example, negatively curved spaces such as the Poincaré disk
are effective for embedding sparse or scale-free networks, since their exponential
geometry aligns with power-law degree distributions. In such setting, L-sBMDS can
improve efficiency by selecting highly connected nodes as landmarks.
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Additionally, many potential theoretical developments remain. For example, it
appears that one needs approximately Dv/N bands where N is the number of objects
and D is the embedding space. However, we have no formal proof, only experimental
results (Sects. 3.2 and 3.3, Fig. 16). Determining the number of desired bands/land-
marks is difficult due to its data-dependence. We explain in Sect. A.4 how one could
extend Theorem 1’s proof of posterior consistency to higher dimensions. The biggest
limitations are extending Lemma 3 and obtaining estimates with good dependence on
dimension D. One could also explore treating the coupling matrix J,, y as a random
variable that depends on the observed data (and perhaps changes over the run-time of
an algorithm). An appealing feature of Raftery et al. (2012) is that they claim reason-
able uncertainty quantification along a truly linear run-time. It seems difficult to for-
malize such a result with posterior consistency for our sSBMDS models as the number
of bands (landmarks) grows with the number of objects. We are left with many tan-
talizing questions: “by including a data-informed approach to model sparsity, can we
achieve a linear run-time and still demonstrate posterior consistency?”, “how should
we be measuring consistency?”, and “do the datasets Raftery et al. (2012) study have
any special features that change the rate of convergence for a sSBMDS-like model?”

Lastly, we are interested in further extensions within phylogeography. Holbrook
et al. (2021) and Li et al. (2023) select the dimension of the latent diffusion process
using cross-validation, which is computationally demanding. Therefore, we want to
incorporate a shrinkage prior within the Bayesian phylogenetic MDS framework that
penalizes the eigenvalues of the diffusion rate matrix. As long as implementing such
a prior does not slow down mixing, this approach may help one learn the latent loca-
tions in a faster, more unified manner.

Proof of Theorem 1
Throughout this section, we fix notation as in the statement of Theorem 1.

Consistent Estimates of Absolute Values

We note that |z,| (but not z, itself) is effectively identifiable given the data
{5ny}y ek, and we have the posterior concentration bound:
n,N

Lemma 1 Fix some 0 < o < 0.1 and a sequence €N = 6;0'5*'“. Then there exist

constants ¢y, cg, cg > 0 so that for all N sufficiently large and all n € [N, k € [K],
we have:

Plp({u : min(ju — z,|, |u + z,|) < ClEN}Hény}yeG(‘"ﬂy”) >1—e N> 1 e’cﬂlf"‘f\f.(lg)
Proof Given xz,,, the data {§ny}y ci e are 1id. with distributions being a finite
n,N

mixture of truncated Gaussians. Denote the density of this distribution by ¢, , and let
F = {qu }uer be the associated family of possible distributions.
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With e as above and this choice of F, for any fixed 0 < ¢ < ¢t small enough
and all N > Ny large enough, the sequence {e } satisfies Inequality (3.1) of Wong
and Shen (1995) for the collection of likelihoods F. Applying Theorem 1 of Wong
and Shen (1995) (together with the well-known formula for Hellinger distances
between Gaussians), there exist constants c1, 2, c3 so that for all NV sufficiently large,

w(0),
Bl sup qu(0y, )

*
w:min(|lu—zn, |, |lu+xn,|)>cre qun( n, )
(I [ )>c1 NyeGifg\?')) Y

> —CQZNE?V —C3ZN€?\]
Z € } < e '(20)

where the outer probability is taken with respect to the distribution of the data
{5ny}y cG ) given x,,. On the other hand, for all u satisfying |u — z,,| < é% and
n,N N

all ¥ sufﬁcfently large, we have

H 9z, (5;,3;) <9

qu(65.,) ey

(k(n))
yeGn,N

Combining Inequalities (20) and (21) completes the proof (with possibly different
values of ¢1, ¢, ¢3). O

Consistent estimates of signs

Fix mn,n’ €[N] and associated indices k(n),k(n') € [K]. Fix
J = Jun N T )\GEG U GEGD) satistying | 7] > L.

Let &,, be the posterior median of the distribution of |z, | given {5ny}y G,
n,N

and similarly for Z,,/. For j € J, define the Bernoulli random variables Zj = 1a,,
where A; is the event:

Aj = {max(énj7 (Sn/j) > |£%n — ‘%n/|} (22)
Note that &,,Z, are {5"?/}1166‘555\7)) U {5"'?/}746@;’3%”'measurable’ and

(Onj,0nsj) are independent of {5”7’}3/6@5553))U{(sn/y}yeGiﬁ(ﬁ” for each

j € J, and finally the collection {(0y;,0n/;)}jes are independent. Thus, condi-
tional on {(5ny}y€GEmL)) u {5”'y}yeciﬁf;;/>>’ the random variables {Z, }, ¢ are i.i.d.

Denote by 7, ,,/ their common parameter. By the same argument as in Lemma 1, we
have the posterior concentration bound:

Lemma 2 Fix notation 0 < a < 0.1, ey = 61_\,0‘5"’0‘ and notation as above. Then
there exist constants cy, cz, cg > 0 so that, for all N sufficiently large,

Plp({r : |r — rpn| < cren}{Zy }yes) > 1 — e NN > 1 — ¢ iNer (23)
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Accuracy with truncated normal noise
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Fig. 12 The mean of the mean squared error (MSE) across all distances using 1 to 10 landmarks for 10
data points and 1 to 20 landmarks for 100 and 1000 data points. We estimate Euclidean distances from
the inferred locations obtained using an adaptive Hamiltonian Monte Carlo algorithm under landmark
sparse Bayesian multidimensional scaling (L-sBMDS). afme is the variance component of the trun-
cated normal noise centered at 0 added to the “true” distance matrix such that o¢,e corresponds to the
BMDS error standard deviation o

We observe that this will allow us to learn whether Z,,, Z,,» have the same signs
(as long as both are far from 0). More precisely, for j € J, define Y; = 15,, where

Bj = {max(6nj, 5n/j) > |§Zn + :%n/”’ (24)
By the same argument as the one immediately following Equation (22), the Y} are
i.i.d. Bernoulli. Denote by ¢y, »,» their common parameter. The following is a direct

calculation with Gaussians':

Lemma 3 There exists C, D > 0 depending on o so that, for all N sufficiently large,
the following implication holds:

{min(|§n|a |i’n’|) > CEN} = {|rn,n’ - qn,n’| > DEN}~ (25)

Completing the Proof
We complete the proof of Theorem 1.

Proof For constants cq, co, c3 to be determined later, we define events

An = {Vn € [N],k € [K], p({u : min(Ju — z,|, |u + z,|) < cleN}|{5ny}y6G<k(£))) >1—e 2tk }(26)

"If ¢ =0, we’d just look at the probability that the latent position is in the interval
(= min(|Zn|, |Zn/|), min(|Zn|, |Z,])), for which this is obvious. Since o > 0, a complete calculation
needs to add in a few additional cases. These doesn’t substantially change the results from the trivial case.
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Fig. 13 Time elapsed to calculate the landmark sparse Bayesian multidimensional scaling (L-sBMDS)
likelihood and gradient using L landmarks as a function of the number of data points

Inferred diffusion rates
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Fig. 14 Posterior distribution of strain-specific diffusion rates inferred from 6-dimensional Bayesian
phylogenetic multidimensional scaling with effective world-wide air traffic space distances for data.
B-sBMDS/HMC uses 100 (left) and 200 (right) bands to compute the sparse banded likelihood and
gradient for inference within the Hamiltonian Monte Carlo algorithm

and
By = {0’ € N, p({r : Ir = ruw| < crewh{Zyhyes) > 1 - e 1 1)

Since we have chosen ey = 6;,0'5“‘ for some 0 < a < 0.1, we have that
Ined > %N @ for all N sufficiently large. Thus, by Lemmas 1 and 2, we know that
Ap and By occur asymptotically almost surely.

On the event A, we correctly recover |1:£1N) | up to additive error O(ey ). We now
fix a large constant C and consider two cases:

1. When |x£LN)| < Cey, recovering |x£lN)| up to additive error O(ey ) also means

recovering M) up to additive error O(ey).
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Fig. 15 The mean of the mean squared error (MSE) across all distances using 10, 20 and all bands/land-
marks for 50, 100 and 1,000 data points. We estimate Euclidean distances from the inferred locations
obtained using an adaptive Hamiltonian Monte Carlo algorithm under the B-sBMDS, L-sBMDS and
full BMDS frameworks. The prior of the latent locations is a multivariate normal distribution centered
around 0 with standard deviation equal to é, i, % or 1. The “true” latent locations are generated from
a standard normal multivariate distribution. We sometimes perform worse than simply sampling from
the prior because the model “overcompensates™ by inflating o. Since the prior contribution grows with
N, there is a threshold in the ratio between likelihood and prior contributions that must be exceeded for
good recovery. With sufficiently large N, the likelihood eventually dominates. In practice, we recom-
mend that users 1) ensure the BMDS noise scale is small relative to the prior scale, which is scientifi-
cally reasonable since observed dissimilarities should be more informative than the latent spread, or 2)
learn the prior scale/covariance structure as a hyperparameter in the model as we do in Sect. 3.2 or as
in Oh and Raftery (2001)
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Fig. 16 Ratio of the mean Hellinger distance for various dimensionalities (D) and number of data
points (N). Hellinger distances are computed from the posterior distributions of the estimated Euclid-
ean distances between full BMDS and banded sBMDS with [ Dv/ N | bands. Data is generated under
Gaussian assumptions as described in Sect. 3. For fixed D, we calculate the ratio as the mean Hellinger
distance with N data points and with N = 100. The near horizontal lines across the underlying di-
mensionality indicate that the selected number of bands obtains results that are very similar to the full
model despite the increase in dimensions. The ratio of the Hellinger distance is smaller for larger N as
error goes down at some statistical rate, e.g., of ﬁ
N . . .
2. When |gv51 )\ > Cep for fixed C sufficiently large, Lemma 3 implies that on By
. N . . N .
we also recover the sign of zl ).Thus, in either case, we recover M) up to addi-
tive error O (e ). O
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Fig. 17 The mean of the mean squared error (MSE) across all distances from 1 to 20 bands/landmarks
for 500 data points. We estimate Euclidean distances from the inferred locations obtained using an
adaptive Hamiltonian Monte Carlo algorithm under a one-parameter family of likelihoods interpolat-
ing between a Gaussian and Laplace. When 8 = 1, the likelihood reduces to a Gaussian and when
B = 0, it reduces to a Laplace distribution. We vary 8 € [0, 1] to explore sensitivity to heavier tails.
The “true” latent dissimilarities are Euclidean distances between standard multivariate normal loca-
tions, while the observed dissimilarities are perturbed by Laplace noise calibrated to have a standard
deviation of 0.2

Extending Theorem 1 to higher dimensions

It is natural to ask if Theorem 1 holds in higher dimensions. The answer appears to
be “yes,” but the only proofs that we are aware of have at least one of the following
two substantial flaws: they are noticeably longer or give constants C that scale very
poorly with dimension. We give here a quick sketch of a proof that closely mimics
our one-dimensional argument. It requires no new ideas, but gives bounds that scale
very poorly with respect to dimension.

In our proof of Theorem 1, we invoke Theorem 1 of Wong and Shen (1995) twice:

(k(n))
n,N

once in Lemma 1 on the “single row” G to show that we have learned |z,,| with

high accuracy, and again in Lemma 2 on the “pair of rows with large intersection”
J to show that we have learned the sign of x,, (as long as |z,,| is sufficiently large).
To extend this to a higher dimension D, we would invoke Theorem 1 of Wong and
Shen (1995) (D + 1) times. On the first invocation, we would show that the posterior
distribution of x,, concentrates near a (D — 1)-dimensional set that contains the true
point. For 1 < d < D, in the d’th invocation, we would show that we have learned
that x,, is on a certain subset of dimension (D — d) with high accuracy by looking
at d rows of the matrix. Thus, after D invocations, we would have shown that x,, is
recoverable up to a set of dimension 0. These calculations are nearly identical to the
calculations in the current proof.
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The last invocation would be used to deal with ambiguity on a finite set, as in the
one-dimensional case. Most of the required changes would be routine (e.g., in part
2 of Assumption 1, we would need intersections of (D+1) parts of the partition to
support our (D+1) invocations of Theorem 1 of Wong and Shen (1995)). The biggest
change comes in proving the natural analogue to Lemma 3. This calculation is what
describes a quantitative sort of identifiability for the model. To extend our arguments
to higher dimensions, we need a result along the lines of: “the set of latent points
that (i) lie in a set of dimension (D — d + 1) and (ii) have a given expected distance
r will lie in a reasonably nice set of dimension (D — d).” Ignoring truncations, one
can easily check see that the following is true in dimension d = 1: for r > 0, the
set of points x such that E[0,, |z, = x| = r is a sphere. When we allow for trun-
cations in dimension d = 1, we merely need to slice off part of the sphere, and so
Lemma 3 is straightforward. For fixed d > 1, the various truncations and condition-
ings involved in repeatedly using this calculation will result in repeated application of
unions, intersections and truncation operations to these spheres. In dimension d = 2,
proving the resulting analogue of Lemma 3 in this way is a straightforward but very
messy calculus exercise. Unfortunately, we see no easy way to do quick calculations
on the resulting set in arbitrary dimension, and no way at all to obtain estimates with
reasonable dependence on D.

Additional plots

Figures 12 and 13 are analogous to Figs. 1 and 7 from Sect. 3, but under the sparse
model using landmarks (L-sBMDS). Figure 12 demonstrates that very few land-
marks are necessary to achieve high accuracy relative to the number of data points.
Figure 13 plots the raw speed-ups, varying the number of landmarks as the number
of data points increases. Figure 14 illustrates the posterior distribution of the strain-
specific diffusion rates under the B-sBMDS/HMC model using 100 and 200 bands.
When the number of bands is 200, we see no apparent difference from the full BMDS
plotin Fig. 9. In Figs. 15, 16 and 17, we explore the sensitivity of our sparse methods
to modeling assumptions such as the choice of prior, number of bands relative to
dimensionality and likelihood.
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