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Abstract
Bayesian multidimensional scaling (BMDS) is a probabilistic dimension reduction 
tool that allows one to model and visualize data consisting of dissimilarities be-
tween pairs of objects. Although BMDS has proven useful within, e.g., Bayesian 
phylogenetic inference, its likelihood and gradient calculations require burdensome 
O(N2) floating-point operations, where N is the number of data points. Thus, 
BMDS becomes impractical as N grows large. We propose and compare two sparse 
versions of BMDS (sBMDS) that apply log-likelihood and gradient computations 
to subsets of the observed dissimilarity matrix data. Landmark sBMDS (L-sBMDS) 
extracts columns, while banded sBMDS (B-sBMDS) extracts diagonals of the data. 
These sparse variants let one specify a time complexity between N2 and N. Under 
simplified settings, we prove posterior consistency for subsampled distance matri-
ces. Through simulations, we examine the accuracy and computational efficiency 
across all models using both the Metropolis-Hastings and Hamiltonian Monte Carlo 
algorithms. We observe approximately 3-fold, 10-fold and 40-fold speedups with 
negligible loss of accuracy, when applying the sBMDS likelihoods and gradients to 
500, 1000 and 5,000 data points with 50 bands (landmarks); these speedups only 
increase with the size of data considered. Finally, we apply the sBMDS variants to: 
(1) the phylogeographic modeling of multiple influenza subtypes to better under-
stand how these strains spread through global air transportation networks and (2) 
the clustering of ArXiv manuscripts based on low-dimensional representations of 
article abstracts. In the first application, sBMDS contributes to holistic uncertainty 
quantification within a larger Bayesian hierarchical model. In the second, sBMDS 
approximates uncertainty quantification for a downstream modeling task.
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1  Introduction

Multidimensional scaling (MDS) is a dimension reduction technique that maps 
pairwise dissimilarity measurements corresponding to a set of N objects to a con-
figuration of N points within a low-dimensional Euclidean space (Torgerson 1952). 
Classical MDS uses the spectral decomposition of a doubly centered matrix derived 
from the observed dissimilarity matrix to calculate the objects’ coordinates. While 
classical MDS serves as a valuable data visualization tool, probabilistic extensions 
further enable uncertainty quantification in the context of Bayesian hierarchical mod-
els. Oh and Raftery (2001) propose a Bayesian framework for MDS (BMDS) under 
the assumption that the observed dissimilarities follow independent truncated nor-
mal probability density functions (PDFs). BMDS facilitates Bayesian inference of 
object configurations in a manner that is robust to violations of the Euclidean model 
assumption and dimension misspecifications (Oh and Raftery 2001). The key benefits 
of a Bayesian approach to MDS are that it provides uncertainty quantification for the 
projection itself and conditional distributions that can be easily integrated with other 
probability models, enabling fully model-based approaches to analyzing dissimilarity 
data. For example, one may incorporate BMDS into hierarchical modeling frame-
works for Bayesian phylogeography (Bedford et al. 2014; Holbrook et al. 2021; Li 
et al. 2023), clustering (Oh and Raftery 2007) and variable selection (Lin and Fong 
2019).

Bayesian phylogeography uses molecular data from species such as viruses, bac-
teria or pathogens to probabilistically model their evolution over both time and space 
(Lemey et al. 2009). For instance, one can reconstruct viral dispersion patterns to 
better understand the way viruses spread within and between human populations. The 
incorporation of BMDS within Bayesian phylogeography allows one to place dis-
similarity data between species into a low-dimensional spatial representation while 
also considering their evolutionary dynamics from genetic data. Bedford et al. (2014) 
simultaneously characterize antigenic and genetic patterns of influenza by combin-
ing BMDS with an evolutionary diffusion process on the latent strain locations. They 
apply BMDS on hemmagglutination inhibition assay data to place the subtypes on a 
low-dimensional antigenic map. Holbrook et al. (2021) implement a similar Bayes-
ian phylogenetic MDS model but perform phylogeographic inference on pairwise 
distances arising from air traffic data. Additionally, Li et al. (2023) use phylogenetic 
BMDS on pairwise distances stemming from hepaciviruses to infer the viral loca-
tions in a lower dimensional geographic and host space.

Unfortunately, BMDS is difficult to scale to big data settings; computing the 
BMDS log-likelihood and gradient each have O(N2) complexity. Bedford et  al. 
(2014) partially circumvent this problem by assuming that the observed data fol-
low non-truncated Gaussian distributions, thereby avoiding the costly floating-point 
operations necessary to evaluate the Gaussian cumulative density function (CDF) in 
the truncated normal PDFs (2). However, there are benefits to using the truncated 
normal distribution: it appropriately accounts for non-negative dissimilarities, and its 
variance term is always less than that of its corresponding non-truncated normal dis-
tribution, resulting in more precise posterior inference. Holbrook et al. (2021) miti-
gate BMDS’s computational burden through massive parallelization using multi-core 
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central processing units, vectorization and graphic processing units. They obtain sub-
stantial performance gains, but parallelization requires expensive hardware. In either 
case, these models still scale quadratically in the number of objects. We therefore 
develop a framework that reduces the time complexity to O(N) by inducing sparsity 
on the observed dissimilarity matrix. We perform experiments with simulated data 
and show that our sparse versions of BMDS (sBMDS) obtain significant speedups 
while preserving inferential accuracy. We then illustrate how one may use sBMDS 
within a larger hierarchical model by extending the types of phylogeographical mod-
els mentioned above under sparse assumptions, implementing sBMDS phylogenetic 
frameworks on air traffic data to analyze the geographic spread of four influenza 
subtypes. Additionally, we apply sBMDS to a collection of ArXiv paper abstracts 
and perform post-hoc clustering on posterior samples of the low-dimensional embed-
dings. Using a “bagged estimator” approach, we obtain posterior probabilities over 
cluster assignments.

In the following, we present two versions of sparse BMDS and prove that under 
simplistic conditions, the posterior latent locations are consistent for subsampled dis-
similarity matrices (Sect. 2). In Sect. 3, we evaluate the empirical accuracy, sensitiv-
ity to model misspecification and computational performance of both methods. We 
apply sBMDS to the phylogeographic modeling of influenza variants and verify that 
we obtain similar migration rate estimates for both full and sparse BMDS models 
(Sect.  3.2). In Sect.  3.3, we apply sBMDS to a dataset representing ArXiv paper 
abstracts and recover the posterior probability that two manuscripts belong to the 
same subject-matter category. We conclude by summarizing our findings and dis-
cussing future research directions (Sect. 4).

2  Methods

2.1  Bayesian multidimensional scaling

Bayesian multidimensional scaling (BMDS) (Oh and Raftery 2001) models a set of N 
objects’ locations as latent variables in low-dimensional space under the assumption 
that the observed dissimilarity measures follow a prescribed joint probability distri-
bution. To set notation: for A ⊂ R, let NA(µ, σ2) denote the Gaussian distribution 
truncated to A; for k ∈ N, let [k] = {1, 2, . . . , k}. Within BMDS, each observed dis-
similarity measure δnn′  is the posited latent measure δ∗

nn′  plus a truncated Gaussian 
error:

	 δnn′ ∼ N(0,∞)(δ∗
nn′ , σ2), n ̸= n′, n, n′ ∈ [N ],� (1)

where δ∗
nn′ =

√∑D
d=1(xnd − xn′d)2 is the Euclidean distance between latent loca-

tions xn, xn′ ∈ RD, and N(·, ·) represents the normal distribution. These assump-
tions yield the log-likelihood function
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ℓ(∆, σ2) = −m

2
log(2πσ2) −

∑
n<n′

[
(δnn′ − δ∗

nn′)2

2σ2 + log Φ
(

δ∗
nn′

σ

)]
,� (2)

where ∆ = {δnn′} is the symmetric N × N  matrix of observed dissimilarities, 
m = N(N − 1)/2 is the number of dissimilarities, and Φ(·) is the standard normal 
CDF.

Many MCMC algorithms, e.g., Hamiltonian Monte Carlo (HMC) (Sect. 2.4) and 
Metropolis-adjusted Langevin algorithm (MALA), use evaluations of gradients for 
efficient state space exploration. For this model, we take the first derivative of the 
log-likelihood function (2) with respect to a single row xn of X, the N × D matrix of 
unknown object coordinates to obtain the log-likelihood gradient function

	

∇xnℓ(∆, σ2) = −
∑

n′ ∈ [N ],
n′ ̸= n

[(
(δ∗

nn′ − δnn′)
σ2 + ϕ(δ∗

nn′/σ)
σΦ(δ∗

nn′/σ)

)
(xn − xn′)

δ∗
nn′

]
≡ −

∑

n′ ∈ [N ],
n′ ̸= n

rnn′ .
� (3)

Here ϕ(·) is the PDF of a standard normal variate, and rnn′  is the contribution of the 
n′th location to the gradient with respect to the nth location.

The BMDS log-likelihood (2) and gradient (3) both involve summing 
(

N
2

)
 

terms and require O(N2) floating point operations. Given the large number of calcu-
lations needed, they become computationally cumbersome as the number of objects 
grows large. Therefore, we propose using a small subset of the data for likelihood and 
gradient evaluations, namely the sparse BMDS methods (sBMDS).

2.2  Sparse likelihoods and their gradients

For each item n, let Jn,N ⊂ [N ] \ {n} be an index set. We consider sparse coupling 
approaches resulting in log-likelihoods and log-likelihood gradients of the form

	

ℓsp(∆, σ2) = −
N∑

n=1

∑

n′ ∈ Jn,N ,
n′ > n

[
1
2

log(2πσ2) + (δnn′ − δ∗
nn′)2

2σ2 + log Φ
(

δ∗
nn′

σ

)]
,
� (4)

and

	
∇xnℓsp(∆, σ2) = −

∑
n′∈Jn,N

rnn′ .� (5)

We reduce the computational complexity of BMDS by including a small subset of 
couplings Jn,N  per object n, where |Jn,N | ≪ N . Here, we discuss two possible strat-
egies for choosing Jn,N . By a slight abuse of notation, we use [a, b] to refer to a closed 
interval of either reals or integers, where the appropriate set should be obvious from 
context. The first option is to extract B ∈ [N − 1] off-diagonal bands of the observed 
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dissimilarity matrix such that Jn,N = [max(1, n − B), min(N, n + B)]\{n} for 
all n. The second approach is to choose L ∈ [N ] objects called “landmarks” and 
select each landmark’s dissimilarities from the remaining N − 1 objects, e.g., 
Jn,N = [N ]\{n} for n ∈ [L] and Jn,N = [L] for n ̸∈ [L]. Essentially, this strategy 
retains a rectangular subset of the observed dissimilarity matrix by extracting L col-
umns (rows) of the data. We note there is no loss of generality in taking the first n 
indices as landmarks rather than an arbitrary set because one can relabel the object 
indices without affecting the learned geometry. We refer to the first method as banded 
sBMDS (B-sBMDS) and the second method as landmark sBMDS (L-sBMDS). 
Alternative strategies for selecting index sets are possible, provided they satisfy 
Assumption 1 (Sect. 2.3). For instance, our B-sBMDS model assumes distances are 
measured on the real line and bands are defined as a contiguous interval. However, 
one could explore other forms of banded matrices, e.g., by selecting any set of entries 
in the distance matrix.

To highlight the difference, we consider a simplified scenario in which the num-
ber of objects is five, the latent dimension is two, the BMDS error variance σ2 is 
0.25, and the observed dissimilarities are equal to the latent dissimilarity measures 
(δnn′ = δ∗

nn′). Given the distance and location matrices

	

∆ =




0.00 1.35 2.53 0.99 1.85
1.35 0.00 1.54 0.76 0.50
2.53 1.54 0.00 1.54 1.26
0.99 0.76 1.54 0.00 1.12
1.85 0.50 1.26 1.12 0.00


 , X =




0.59 0.71
−0.11 −0.45
0.61 −1.82
0.63 −0.28

−0.28 −0.92


 ,

we compare the sBMDS log-likelihood (Table 1) and gradient (Table 2) calculated 
from couplings defined by B-sBMDS versus L-sBMDS.

For B-sBMDS, the number of couplings is the number of elements in B bands. 
The relationship between the number of bands and number of couplings C is 
C =

∑B
b=1(N − b). We add one less coupling for each additional band. When the 

B/L B-sBMDS L-sBMDS
Pairs (n, n′)
1 (1, 2); (2, 3); (3, 4); (4, 5) (1, 2); (1, 3); (1, 4); (1, 5)
2 + (1, 3); (2, 4); (3, 5) + (2, 3); (2, 4); (2, 5)
3 + (1, 4); (2, 5) + (3, 4); (3, 5)
4 + (1, 5) + (4, 5)
Log-likelihood values
1 −0.885 −0.875
2 −1.490 −1.311
3 −1.743 −1.756
4 −1.969 −1.969
B/L refers to the number of bands (B) or landmarks (L), and the + 
symbol indicates all couplings above are also included. The bottom 
table shows the calculated log-likelihoods as the number of bands/
landmarks increases. Importantly, the bottom log-likelihoods are 
equal for both sBMDS variants and correspond to the full BMDS 
log-likelihood

Table 1  We extract the (n, n′) 
pair from the off-diagonals of 
the observed and latent dis-
similarity matrices for banded 
sBMDS (B-sBMDS) versus the 
columns for landmark sBMDS 
(L-sBMDS)
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number of bands equals N − 1, we return to the full BMDS case. Using a subset of 
the observed dissimilarity matrix reduces the burden of computing the BMDS likeli-
hood and gradient to O(NB). Similar arguments hold for L-sBMDS, the likelihoods 
and gradients of which exhibit O(NL) time complexity.

For classical MDS, an analogous strategy to L-sBMDS already exists. In MDS, 
the rate limiting step is the calculation of the top D eigenvalues and eigenvectors 
from a N × N  matrix. Silva and Tenenbaum (2004) propose applying classical MDS 
to L landmark points, e.g., an L × N  submatrix of the observed dissimilarity matrix, 
and then following a distance-based triangulation procedure to determine the remain-
ing object coordinates. L-sBMDS uses the concept of randomly selecting L land-
marks as well, but integrates them into the BMDS framework, allowing inference on 
the entire model. Raftery et al. (2012) approximate the likelihood of their network 
data by taking a random subset of objects deemed to have no link, reducing the time 
complexity from O(N2) to O(N). In the context of a very different network model, 
they incorporate an array of covariates to model the probability of a link between 
objects n and n′ while our model is simpler, using no outside information to aid in 
determining locations in a latent space.

Table 2  We extract the (n, n′) pair from the observed and latent dissimilarity matrices to calculate the 
sBMDS gradients
Banded sBMDS

Pairs (n, n′) Gradient
1 band 2 bands 3 bands 4 bands 1 band 2 bands 3 bands 4 bands

x1(1, 2) + (1, 3) + (1, 4) + (1, 5) [−.010,.017] [−.010,.018] [−.005,.134] [−.006,.135]
x2(2, 3); (2, 1) + (2, 4) + (2, 5) [.014,.011] [.275,.074] [.071, 

−.468]
[.071, 
−.468]

x3(3, 4); (3, 2) + (3, 5); 
(3, 1)

[−.003,.013] [−.026,.036] [−.026,.036] [−.026,.036]

x4(4, 5); (4, 3) + (4, 2) + (4, 1) [−.054, 
−.045]

[−.315, 
−.108]

[−.321,.009] [−.321,.009]

x5(5, 4) + (5, 3) + (5, 2) + (5, 1) [.054,.038] [.077,.015] [.281,.557] [.281,.558]
Landmark sBMDS

Pairs 
(n, n′)

Gradient

1 
landmark

2 
landmarks

3 
landmarks

4 
landmarks

1 landmark 2 
landmarks

3 
landmarks

4 
landmarks

x1(1, 2 − 5) [−.006,.135] [−.006,.135] [−.006,.135] [−.006,.135]
x2(2, 1) + (2, 3 

− 5)
[.010,.017] [.071, 

−.468]
[.071, 
−.468]

[.071, 
−.468]

x3(3, 1) + (3, 2) + (3, 4 
− 5)

[.000,.000] [−.003,.006] [−.026,.036] [−.026,.036]

x4(4, 1) + (4, 2) + (4, 3) + (4, 5) [−.005,.117] [−.266,.054] [−.266,.047] [−.321,.009]
x5(5, 1) + (5, 2) + (5, 3) + (5, 4) [.000,.000] [.204,.543] [.227,.519] [.281,.558]
On the left, the − symbol, as in (n, a − c), indicates pairs (n,  a);  (n,  b);  (n,  c). For example, pair 
(3; 4 − 5) means we include both pair (3, 4) and (3, 5). The + symbol indicates all couplings to the left 
are also included, and [·, ·] represents a vector. On the right is the gradient computed for each xn of X 
as function of the number of bands/landmarks. Extracting the entire column of a landmark point gives 
the full BMDS gradient in RD  whereas banded sBMDS incrementally adds information to the row-wise 
gradients. Importantly, the rightmost gradients are equal for both sBMDS variants and correspond to 
the full BMDS gradient
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2.3  Posterior consistency

For the following theoretical development, we consider the model

	 δnn′ ∼ N(0,M)(δ∗
nn′ , σ2), n ̸= n′, n, n′ ∈ [N ],� (6)

a generalization of (1) insofar as M can be any number within the interval (0, ∞). 
Let the latent locations X be sampled from a range of values in the interval I. The 
posterior density function of the unknown parameters (X, I, σ2, M ) is proportional 
to L(∆|X, σ2, M), the BMDS likelihood function of model (6), and the priors put on 
each auxiliary parameter, e.g.,

	 p(X, I, σ2, M |∆) ∝ L(∆, σ2, M |X) × p(X|I) × p(I) × p(σ2) × p(M).� (7)

The marginal posterior density function of X is

	
p(X|∆) =

ˆ
p(X, I, σ2, M |∆) dI dσ2 dM.� (8)

We examine the posterior consistency of subsampled dissimilarity matrices under 
simple conditions. Fixing some interval I, we sample points x1, . . . , xN

i.i.d.∼ NI(0, 1). 
Let ∆∗ be the Euclidean distance matrix with entries δ∗

nn′ = |xn − xn′ | and δnn′  be 
the noisy observations sampled from the truncated normal model (6). We set a prior 
on I, M and σ2 that has compact support and is bounded away from 0 and infinity on 
its support, e.g., Oh and Raftery (2001), Oh and Raftery (2007). In addition, we fix 
in advance a collection of indices Jn,N ⊂ [N ]\{n} of observations to keep for each 
object n, treating this choice as non-random in the following. Next, we make some 
assumptions about which observations are kept.

Assumption 1  Fix K ∈ N. Assume there exists a sequence {ℓN }N∈N and a collec-
tion of partitions {G

(k(n))
n,N }K

k=1 of Jn,N  with the following properties: 

1.	 For all n ∈ [N ] and k ∈ [K], |G(k(n))
n,N | ≥ ℓN .

2.	 Say n, n′ ∈ [N ] are linked by an edge if there exists k(n), k(n′) ∈ [K] so that 

	 |Jn,N ∩ Jn′,N \(G(k(n))
n,N ∪ G

(k(n′))
n′,N )| ≥ ℓN .� (9)

	  Assume that the graph with these edges and vertex set [N] is a connected graph.
3.	 The sequence ℓN  satisfies 

	
lim

N→∞

ℓN

log(N)2 = ∞.� (10)
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Remark 1  We verify that Assumption 1 holds for L-sBMDS given L ≥ (ℓN + 1 )K  land-
marks and L ≪ N . We can think of ℓN  as the number of retained entries in the sparsest row 
(up to a universal constant). Let ℓN = ⌈

√
N

2 ⌉, so that it satisfies part 3 of Assumption 1. 
For all n ∈ [N ], |Jn,N | ≥ L and for objects n, n′ ∈ [N ], |Jn,N ∩ Jn′,N | ≥ L − 1 . 
Consider the partition G(k(n))

n,N = [⌊ (k−1)L
K ⌋ + 1 , ⌊ kL

K ⌋]\{n}. Then for any object 

n, n′ ∈ [N ], G(k(n))
n,N ∪ G(k(n′))

n′,N = {⌊ (k−1)L
K ⌋ + 1 , ..., ⌊ kL

K ⌋} ≡ G(k)
N  is independent 

of n, n′ and of size L
K , which satisfies part 1 of Assumption 1. Thus in the most con-

servative case, e.g., n ∈ [L] and n′ /∈ [L],

	

|Jn,N ∩ Jn′,N \(G(k(n))
n,N ∪ G

(k(n′))
n′,N )| = |{1, ..., n − 1, n + 1, ..., L}\G

(k)
N |

= (L − 1) − L

K
= L(K − 1)

K
− 1.

As a result, |Jn,N ∩ Jn′,N \(G(k(n))
n,N ∪ G(k(n′))

n′,N )| ≥ ℓN  when L ≥ (ℓN + 1 )K  for 

K > 1 . Notably, the graph in part 2 of Assumption 1 is connected.

Remark 2  Similarly, we verify that Assumption  1 holds for B-sBMDS given 
B ≥ 2 ℓN + 1  bands and B ≪ N . Again, let ℓN = ⌈

√
N

2 ⌉, so that it satis-
fies part 3 of Assumption  1. Under B-sBMDS, the ends of a distance matrix 
have the fewest indices. To ensure that the size of each partition is at least ℓN  at 
these boundaries, let the number of partitions be K = ⌊ B

ℓN
⌋, satisfying part 1 

of Assumption  1. For all n ∈ [N ], |Jn,N | ≥ B and for two consecutive objects 
(n < n′) ∈ [N ], |Jn,N ∩ Jn′,N | ≥ B − 1 . To remove the minimal number of com-
mon indices between two consecutive objects, let G(k(n))

n,N = {n + 1 , .., n + ℓN } so 

that |G(k(n))
n,N | = ℓN . Then, G(k(n))

n,N ∪ G(k(n′))
n′,N = {n′, n′ + 1 , ..., n′ + ℓN } and the 

cardinality of the intersection is ℓN + 1 . Finally,

	

|Jn,N ∩ Jn′,N \(G(k(n))
n,N ∪ G

(k(n′))
n′,N )| ≥ |{n′ + 1, ..., n + B}\{n′, n′ + 1, ..., n′ + ℓN }|

≥ |{n′ + ℓN + 1, ..., n + B}| ≥ (B − 1) − ℓN

because we remove ℓN  elements from the union containing at least B − 1  elements. 
Thus when B ≥ 2 ℓN + 1 , |Jn,N ∩ Jn′,N \(G(k(n))

n,N ∪ G(k(n′))
n′,N )| ≥ ℓN , and we ob-

tain a connected graph, fulfilling part 2 of Assumption 1.

Under Assumption 1, we have the following posterior consistency result.

Theorem 1  Fix 0 < α < 0 .1  and K ∈ N. Let the sequences {Jn,N }, {G(k(n))
n,N } and 

{ℓN } satisfy Assumption  1. Let ϵN = ℓ−0 .5+α
N . Let (x(N)

1 , . . . , x(N)
N )i.i.d.∼ NI (0 , 1 ) 

and let {δ
(N)
nn′ }1≤n<n′≤N  be sampled from model (6). Finally, let 
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(x̃(N)
1 , . . . , x̃(N)

N ) ∼ p(·|{δ
(N)
nn′ }n′∈Jn,N ) be sampled from the associated marginal 

posterior distribution of the model. Then there exists C > 0  so that the event

	 {∀n ∈ [N ], |x(N)
n − x̃(N)

n | < CϵN }� (11)

occurs asymptotically almost surely.

Proof  See Appendix A. � □

Theorem 1 establishes posterior consistency for latent locations estimated from a 
subsampled dissimilarity matrix as we are able to recover the estimated latent loca-
tions x̃(N)

n  up to an additive error of O(ϵN ) relative to the true latent locations x(N)
n . 

Intuitively, each observed distance constrains the feasible location of a point, and 
with Jn,N  such distances, the uncertainty in its position concentrates to a ball of 
radius O(J−1/2

n,N ). Under Part 1 of Assumption 1, every point satisfies Jn,N ≥ ℓN  

with ℓN → ∞, so the worst-case uncertainty scales as O(ℓ−1/2
N ). Theorem 1 formal-

izes this heuristic by showing posterior concentration at rate ϵN = ℓ−0.5+α
N , match-

ing the ℓ−1/2
N . Thus, as long as the number of observations per point grows with the 

sample size, the feasible regions shrink asymptotically, yielding consistent estimators 
of latent positions. Our result parallels the theoretical guarantees of landmark MDS 
(Silva and Tenenbaum 2004) but in a Bayesian setting. We acknowledge that the 
main limitation of this proof is the assumption that we have one-dimensional latent 
objects. See Sect. A.4 for a short discussion of how similar results may be obtained 
in fixed dimensions greater than 1.

2.4  Bayesian computation

Bayesian hierarchical models under the BMDS framework have previously been fit 
using MCMC algorithms such as Metropolis-Hastings (MH) (Metropolis et al. 1953; 
Hastings 1970; Oh and Raftery 2001; Bedford et al. 2014) and HMC (Neal 2012; 
Holbrook et al. 2021). In the following, we experiment with MH and HMC to per-
form posterior inference with the sBMDS models.

Let θ be the random variable of interest and π(θ) the target distribution. Under 
MH, a new candidate θ∗ is sampled from a proposal distribution centered at the value 
of the current iteration s, q(θ∗|θ(s)). One then accepts the candidate with probability

	
α(θ∗|θ(s)) = min

[
1,

π(θ∗)q(θ(s)|θ∗)
π(θ(s))q(θ∗|θ(s))

]
.� (12)

In the BMDS model (1), the parameters of interest are the latent locations X and the 
error variance σ2, and–within a larger Metropolis-within-Gibbs scheme–the target 
distributions of interest are their respective conditional posterior distributions.
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For our MH-based experiments, we jointly draw each candidate object’s latent 
location x∗

n from the normal proposal distribution, N(x(s)
n , τ2), in which the proposal 

standard deviation τ  is a tuning parameter. In practice, we find it beneficial to adjust τ  
in a manner that satisfies the diminishing adaptations criterion of Roberts and Rosen-
thal (2001). Specifically, the acceptance ratio is the number of acceptances in a given 
sample bound. If the acceptance ratio exceeds the target acceptance ratio, we multi-
plicatively increase τ  by (1 + min(0.01, 1/

√
s − 1)); otherwise we multiplicatively 

decrease τ  by (1 − min(0.01, 1/
√

s − 1)).
For BMDS and its sparse variants, the dimension of the state space grows with the 

number of objects. Because MH typically breaks down in high-dimensions, we also 
consider HMC to infer the latent locations. HMC allows one to generate a Markov 
chain with distant proposals that nonetheless have a high probability of acceptance. 
It combines a fictitious momentum variable, P, along with a position variable to 
create a Hamiltonian system from which we compute the trajectories necessary for 
state space exploration. The position variable represents the parameters of the target 
distribution, so in the context of our model, we let the position variable be the latent 
locations X. The Hamiltonian function is

	 H(X, P) = U(X) + K(P)� (13)

where U(X) is the potential energy defined as the negative log target density, and 
K(P) is the kinetic energy defined as K(P) = tr(PT P)/2. The partial derivatives of 
the Hamiltonian dictate how P and X change over time t:

	
dX
dt

= ∂H(X, P)
∂P

= P,
dP
dt

= −∂H(X, P)
∂X

= −∇Xℓ(∆, σ2).� (14)

For computer implementation, these equations are discretized over time using some 
small stepsize ϵ. We follow Neal (2012) and implement the leapfrog method to 
numerically integrate Hamilton’s equations (14). We tune the stepsize in the same 
way we change the proposal standard deviation in the adaptive MH algorithm. To 
propose a new state, we sample an initial momentum variable P0 and numerically 
integrate Hamilton’s equations with initial state, (X(s), P0). We then accept the pro-
posed state, (X∗, P∗), according to the Metropolis-Hastings-Green (Green 1995; 
Geyer 2011) probability of

	
min

[
1, exp(−H(X∗, P∗) + H(X(s), P0))

]
= min

[
1, exp(−U(X∗) + U(X(s)) − K(P∗) + K(P0)

]
.�(15)

Measured on an iteration by iteration basis, HMC allows for faster exploration of 
state spaces, especially in higher dimensions, compared to MH (Neal 2012; Beskos 
et al. 2013). However, HMC is computationally more expensive because it requires 
the gradient of the target function within every iteration of the leapfrog method. 
Recall that these gradient evaluations scale O(N2) for BMDS. If we want to learn the 
BMDS error variance σ2 as well, we again follow the adaptive MH algorithm, draw-
ing a candidate σ2∗ from a truncated normal proposal distribution with the current 
iteration’s σ2(s) as the mean and a standard deviation with the same adaption scheme 
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as described above. We account for the asymmetric proposal distribution within the 
MH acceptance probability (12).

3  Results

We explore the accuracy of full and sparse BMDS as well as the computational effi-
ciency of all models in the context of the MH and HMC algorithms. The code for 
this project is available on Github (​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​a​​n​d​r​e​w​​j​h​o​l​b​​r​o​​o​k​/​​s​p​a​r​​s​e​B​M​D​
S). For visualization, we use the ggplot2 (Wickham 2016) package in R (R Core 
Team 2023).

3.1  Simulation studies

For a full Bayesian analysis, we put a D-dimensional multivariate normal distribution 
with mean 0 and diagonal covariance matrix Λ as the prior for xn, independently 
for n = 1, ..., N . The prior for the BMDS error variance σ2 is an inverse gamma 
with rate a and shape b. One can define hyperpriors for Λ, a, b, but we assume those 
parameters are fixed and known in this section. For our simulations, we set Λ equal to 
the identity I2, a = 1 and b = 1 so that xn ∼ N(0, I2) and σ2 ∼ IG(1, 1). To create 
the observed dissimilarity matrix ∆ = {δnn′}, we add i.i.d. noise using a truncated 
normal distribution with mean 0 and variance σ2

true to a “true” distance matrix. For 
the “true” distance matrix, ∆(true) = {δ

(true)
nn′ }, we generate a N × 2 “true” location 

matrix X from standard normal distributions and use X to calculate the Euclidean 
distance between pairs (n, n′).

3.1.1  Accuracy

We test the accuracy of the sBMDS models by comparing the simulated “true” dis-
similarities to those obtained from HMC using the sBMDS posteriors and gradients. 
Given S iterations, we calculate the mean of the mean squared error ( MSE ) as 
MSE = 1

Sm

∑S
s=1

∑
n̸=n′(δ∗(s)

nn′ − δ
(true)
nn′ )2 where δ∗(s)

nn′  is the Euclidean distance 
calculated from the inferred locations of object n and object n′ at iteration s, δ(true)

nn′  
is the “true” Euclidean distance, and m = N(N − 1) is the number of dissimilarities. 
We compare distances instead of locations because the locations are not identifiable 
under distance preserving transformations. For computational convenience, when the 
number of objects is greater than 1,000, we randomly sample 1,000 distances to cal-
culate MSE . We set σtrue to either 0.1, 0.2, 0.3 or 0.4 to change noise levels and run 
110,000 iterations, discarding the first 10,000 as burn-in and retaining every 100th 
iteration. We establish the initial conditions of the latent locations within HMC from 
classical MDS output.

Figure 1 plots MSE  as function of the number of bands for data with 10, 100 
and 1,000 data points at varying levels of noise (see Appendix B, Fig. 12 for land-
mark results). Likewise, Fig.  2 plots MSE  as function of the number of bands/
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landmarks for data with 10,000 data points under B-sBMDS and L-sBMDS at differ-
ent noise levels. In both figures, all the plots have identifiable elbows, demonstrating 
that a small number of bands/landmarks is sufficient to achieve low error. While we 
need more bands for noisier data, the amount is still modest compared to the number 

Fig. 2  The mean of the mean squared error (MSE) across 1000 distances, randomly sampled from 
distance matrices with 10,000 data points. We estimate Euclidean distances from the inferred locations 
obtained using an adaptive Hamiltonian Monte Carlo algorithm under both sparse Bayesian multidi-
mensional scaling (sBMDS) variants, banded sBMDS (B-sBMDS) and landmark sBMDS (L-sBMDS) 
with 1 to 20 bands/landmarks. σ2

true is the variance component of the truncated normal noise centered 
at 0 added to the “true” distance matrix such that σtrue corresponds to the BMDS error standard 
deviation σ

 

Fig. 1  The mean of the mean squared error (MSE) across all distances using 1 to 10 bands for 10 data 
points and 1 to 20 bands for 100 and 1000 data points. We estimate Euclidean distances from the in-
ferred locations obtained using an adaptive Hamiltonian Monte Carlo algorithm under banded sparse 
Bayesian multidimensional scaling (B-sBMDS). σ2

true is the variance component of the truncated 
normal noise centered at 0 added to the “true” distance matrix such that σtrue corresponds to the 
BMDS error standard deviation σ
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of objects. Interestingly, we detect an elbow earlier for L-sBMDS than B-sBMDS; 
L-sBMDS recovers accurate pairwise relationships more efficiently than B-sBMDS. 
We visually see this difference in Fig. 3. In this simulation, we generate 1000 data 
points using the same sampling scheme and color-code the x-axis of the “true” loca-
tions. After running 110,000 HMC samples, we plot the Procrustes-aligned mean of 
the inferred latent locations from B-sBMDS and L-sBMDS using 5 and 10 bands/
landmarks. From Fig. 3, we observe that while L-sBMDS maintains the integrity of 
the latent locations, B-sBMDS rapidly loses its accuracy as noise increases for 10 
bands and is no longer accurate for 5 bands.

3.1.2  Sensitivity to model misspecification

To observe how the sparse variants behave under model misspecifications, we explore 
two possible situations: 1) a mismatch between the true dimensionality and that spec-
ified by the scientist and 2) heavy-tailed, rather than truncated normal, noise. For case 
1, we vary the dimension of the “true” location matrix from 2 to 10 while fixing the 
embedding dimension to 2 and the truncated Gaussian noise variance σ2

true to 0.2. 

Fig. 3  Procrustes-aligned means of the inferred locations across 100,000 iterations under the B-sB-
MDS and L-sBMDS frameworks when the number of bands/landmarks is ten and five. The number 
of data points is 1000. We simulate the latent locations from a two-dimensional standard normal dis-
tribution and assign a color according to their x-coordinate. σ2

true is the variance component of the 
truncated normal noise centered at 0 added to the “true” distance matrix such that σtrue corresponds 
to the BMDS error standard deviation σ

 

1 3

Page 13 of 31     12 



A. Sheth et al.

As expected, MSE  decreases as the true underlying dimensionality approaches the 
embedding dimension. Full BMDS and B-sBMDS with 20 bands are more robust to 
dimension misspecification than classical MDS, and the accuracy for B-sBMDS with 
20 bands closely matches that of full BMDS (Fig. 4).

For case 2, we assume a correctly-specified-dimensional Euclidean space, but add 
i.i.d log-normal noise to the “true” distance matrix. We bootstrap the MSE  across 
all distances from 100 data points, a 100 times and plot the mean of MSE  along 
with error bars representing ± the standard deviation of MSE . Figure 5 demon-
strates that, even with heavy-tailed data, both sparse variants achieve comparable 
MSE s to full BMDS’s at a low number of bands/landmarks. In both cases, we 

observe that B-sBMDS seems to be less sensitive to model misspecification than 
L-sBMDS. We further explore the sensitivity of our sparse methods to modeling 
assumptions in Appendix B, specifically the prior choice (Fig. 15), the number of 
bands/landmarks relative to dimensionality (Fig. 16) and the assumed likelihood for 
the dissimilarities (Fig. 17).

3.1.3  Computational performance

To better understand the computational benefits of the sBMDS variants, we first cal-
culate the log-likelihood and log-likelihood gradient using B-sBMDS and L-sBMDS 
for a 10,000 by 10,000 Euclidean distance matrix. Recall that the number of cou-
plings decreases per additional band/landmark. As a result, we see a parabolic-like 
relationship between evaluation time (in seconds) and the number of bands/land-
marks (Fig. 6). If we were to plot the number of couplings vs seconds per evaluation, 
we would observe linear associations instead. When the number of bands/landmarks 

Fig. 4  The mean of the mean squared error (MSE) across all distances using 20 bands/landmarks for 
100 and 1,000 data points. We vary the dimension space of the “true” latent locations while fixing the 
latent dimensionality to two. We estimate Euclidean distances from the inferred locations obtained 
using an adaptive Hamiltonian Monte Carlo algorithm under the B-sBMDS, L-sBMDS and full BMDS 
frameworks. Additionally, we compare the mean MSE across all distances from the inferred locations 
using classical MDS
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is 9,999, we return to the full case. We observe likelihood (gradient) speedups of 
457-fold (773-fold), 91-fold (71-fold), 7-fold (10-fold) and 1.3-fold (1.3-fold) for 
5, 50, 500 and 5000 bands (landmarks); there appears to be negligible time differ-
ences between B-sBMDS and L-sBMDS. Figure 7 emphasizes this correspondence 

Fig. 6  Time elapsed to calculate the sparse BMDS (B-sBMDS and L-sBMDS) likelihoods (cyan) and 
gradients (red) as a function of the number of bands/landmarks when the number of data points is 
10,000. The seconds per evaluation at 9999 bands/landmarks correspond to the time it takes to calcu-
late the full BMDS likelihoods and gradients. The parabolic curve is due to the number of couplings 
decreasing per additional band/landmark, causing the differences in computational time to reduce as 
well. If we plot the number of couplings vs seconds per evaluation, we would observe strictly linear 
associations

 

Fig. 5  The average mean of the mean squared error (MSE) across all distances from 100 data points 
evaluated at intervals of 10 bands/landmarks, from 10 to 100, repeated 100 times. The dot is the aver-
age mean of MSE, and the error bars are ± one standard deviation away from this mean. We estimate 
Euclidean distances from the inferred locations obtained using an adaptive Hamiltonian Monte Carlo 
algorithm under both sparse Bayesian multidimensional scaling (sBMDS) variants, banded sBMDS 
(B-sBMDS) and landmark sBMDS (L-sBMDS). When the number of bands (landmarks) equals 99, 
we return to full BMDS. σ2

true is the variance component of the log-normal noise centered at 0 added 
to the “true” distance matrix such that the distribution of the observed distance matrix has heavy-tails
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between speedups and number of bands, demonstrating the performance gains using 
a small number of bands relative to the number of objects. We observe approximately 
3-fold, 10-fold and 40-fold speedups when applying the sBMDS likelihoods and gra-
dients to 500, 1,000 and 5,000 data points with 50 bands/landmarks. We only scale 
up to 50 bands because these are reasonable band counts to achieve high accuracy 
(Figs. 1 and 2). We see similar patterns for landmarks in Fig. 13 (Appendix B).

To compare computational performances, we set σtrue = 0.2, a value that allows 
us to establish accurate results while obtaining high acceptance probabilities. We fix 
the number of bands/landmarks to 10 based on the findings from both Fig. 1 and 12, 
which confirm that this number ensures high model accuracy when σtrue = 0.2 and 
N < 1,000. We then conduct MH and HMC under the full BMDS, B-sBMDS, and 
L-sBMDS models. For a fair comparison, we run all chains until the minimum effec-
tive sample size (ESS) is at least 100. ESS is a function of asymptotic auto-correla-
tion, ESS = S

1+2
∑∞

t=1
ρt

, where ρt is the autocorrelation between samples separated 

by a lag of t timesteps and S is the length of a time series input. We calculate ESS 
using the coda package (Plummer et  al. 2006) in R. We define efficiency as the 
minimum ESS per hour and take the natural log of it to allow comparison across 
scales. Figure 8 compares efficiency across the three models and two MCMC algo-
rithms. The sBMDS variants under HMC outperform the others even in moderately 
high dimensions. MH begins to break down as the number of data points increases 
because, while it is computationally faster than HMC, the large dimension of the 
state space prevents efficient exploration, leading to high auto-correlation and low 
ESS values.

3.2  Analysis of global influenza

When incorporated into a larger Bayesian hierarchical model, sBMDS provides 
dimension reduction that propagates and accounts for total model uncertainty. To 
demonstrate the robustness and applicability of our sparse frameworks, we inte-
grate them within a Bayesian hierarchical model for analyzing the global spread of 

Fig. 7  Time elapsed to calculate the banded sparse Bayesian multidimensional scaling (B-sBMDS) 
likelihood and gradient using B bands as a function of the number of data points
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influenza. Every year seasonal influenza affects millions of adults, resulting in about 
140,000 to 710,000 influenza-related hospitalizations in the United States alone 
(Rolfes et  al. 2018). The virus’s ability to constantly evolve makes understanding 
its viral patterns so important for managing prevalence. The use of easily accessible 
mobility data can improve the readiness in which we learn about viral epidemics. 
Holbrook et al. (2021) apply the BMDS framework to a phylogeographic analysis 
of the spread of influenza subtypes through transportation networks. They analyze 
1,370, 1,389, 1,393 and 1,240 samples of type H1N1, H3N1, Victoria (VIC) and 
Yamagata (YAM), spanning 12.9, 14.2, 15.4 and 17.75 years, respectively. To scale 
BMDS to data of this size, they implement core model likelihood and log-likelihood 
gradient calculations on large graphics processing units and multi-core central pro-
cessing units. Unfortunately, such an approach requires time-intensive coding and 
access to expensive computational hardware. We employ a similar Bayesian hierar-
chical model, applying the same highly structured stochastic process priors but use 
sBMDS to transform to a latent network space. We are interested in whether under 
sBMDS we can accurately and efficiently infer the subtype-specific rates of dispersal 
across the latent airspace for the four influenza strains.

Our data consists of pairwise “effective distances” (Brockmann and Helbing 2013) 
between countries, which inversely measures the probability of traveling between air-
ports. More trafficked airports have a shorter “distance” and thus a higher chance of 
disease transmission. Effective distances are better at predicting disease arrival times 
and spread compared to geographical distances because they incorporate the underly-
ing mobility network (Brockmann and Helbing 2013). For each influenza subtype, 
we apply sBMDS to their air traffic data with the following priors for the unknown 
parameters, Xv, σ2

v , and hyperparameter Σv . For strain v, the prior on the viral latent 
locations Xv follows a multivariate Brownian diffusion process along the tree

Fig. 8  Computational performance measured as the logarithm of the minimum effective sample size 
(ESS) per hour across different frameworks and number of data point. In the legend, the half before 
the slash corresponds to the model type. “Full” is the BMDS model; “B-sBMDS” (banded sBMDS) 
and “L-sBMDS” (landmark sBMDS) are the sparse models using 10 bands/landmarks. The latter half 
explains the MCMC algorithm used for posterior inference. HMC abbreviates for Hamiltonian Monte 
Carlo and MH for Metropolis-Hastings

 

1 3

Page 17 of 31     12 



A. Sheth et al.

	 Xv ∼ MN(µv, VGv
, Σv),� (16)

in which µv  is the N × D mean matrix, VGv  is the N × N  row covariance matrix 
calculated from a fixed tree Gv , and Σv  is the D × D column covariance matrix, 
independently for v = 1, ..., 4. For viral diffusion, Σv  describes how the virus’s loca-
tion in geographic space covary over lineages. In addition, we assume a priori

	 Σ−1
v ∼ Wishart(d0, T0) � (17)

	 σ−2
v ∼ Gamma(1, 1). � (18)

d0 is the degree of freedom set as the dimension of the latent space and T0 is the 
rate matrix fixed as ID in our model. The trace of Σv  provides the instantaneous rate 
of diffusion and is of chief scientific interest. One can think of spatial variance as how 
much the virus diffuses in a geographic dimension, so by summing up the variance in 
each dimension, we can understand the total spread of a virus across space in a given 
moment. We want to accurately infer the trace of Σv  with our phylogenetic sBMDS 
model trained on a latent airspace. We implement the adaptive HMC algorithm to 
recover the viral latent locations along with adaptive MH updates on the BMDS 
precision parameter, 1/σ2

v , and Gibbs updates on Σ−1
v . We let the latent dimension 

be six as Holbrook et al. (2021) recommended from 5-fold cross-validation. We find 
20 leapfrog steps to be adequate as we vary the number of bands/landmarks to 50, 
100 and 200.

3.2.1  Accuracy

For each subtype and model, we run 120,000 iterations, burning the first 20,000 and 
saving every 100th iteration. Figure 9 plots the posterior distributions of the strain-

Fig. 9  Posterior distribution of strain-specific diffusion rates inferred from 6-dimensional Bayesian 
phylogenetic multidimensional scaling with effective world-wide air traffic space distances for data. 
Full/HMC refers to the use of the full likelihood and gradient whereas B-sBMDS/HMC uses 50 bands 
to compute the sparse banded likelihood and gradient for inference within the Hamiltonian Monte 
Carlo algorithm
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specific diffusion rates inferred from the full (left) and banded sparse (right) model. 
We successfully capture the relative distributions for the B-sBMDS using 50 bands, 
but note that the posterior modes are slightly off. When we increase the number 
of bands to 200 (Fig. 14), the distributions appear identical. For Fig. 10, we apply 
sBMDS with 50 bands to the H1N1 air traffic data and use Procrustes alignment to 
account for rotation and reflection invariance across MCMC iterations. Since our data 
has multiple taxon IDs per country, we calculate the mean of the Procrustes-aligned 
latent locations for each country, yielding a country-level centroid per iteration. We 
then plot the first two latent dimensions. Figure 10 demonstrates that we obtain a rea-
sonable map; countries in the same continent group together, and within continents, 
countries with more air traffic are more centrally located. Moreover, the posterior 
spread of the centroids across iterations provides a measure of uncertainty, revealing 
both the strength of clustering and the variability in each country’s inferred position. 
Using the textmineR package (Jones 2021) in R, we compute the Hellinger dis-
tance between the strain-specific posterior distributions of the squared effective dis-
tance per year from the full and sparse methods (Table 3). As expected, the Hellinger 
distance decreases with more bands.

3.2.2  Computational performance

We measure efficiency speedups across the four influenza subtypes as the ratio of ESS 
per hour between the full and sparse versions. From Table 3, we generally observe 
that B-sBMDS is more efficient than L-sBMDS, which matches our previous find-
ings (Fig. 8). The efficiency speedup decreases with more bands, but is still three 
times faster for a more than sufficient band count of 200.

Fig. 10  The first two dimensions of the inferred latent locations for each country using a 6-dimensional 
sparse Bayesian phylogenetic multidimensional scaling with 50 bands on the H1N1 air traffic data. 
The plotted latent locations are the country-level Procrustes-aligned posterior means across taxon from 
2,000 MCMC samples obtained after thinning
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3.3  Cluster analysis of ArXiv articles

We explore the utility of sBMDS for approximating posterior uncertainty in down-
stream tasks by applying cluster analysis to a collection of ArXiv paper abstracts. 
Using the arxivscraper package (Sadjadi 2017) in Python, we scrape articles 
posted on ArXiv from December 2017 to March 2024 across four subject areas: 
mathematical logic (math.LO), applied physics (physics.app-ph), statistics/machine 
learning (stat.ML) and economics (q-fin.ec). Our final dataset includes 9,308 articles 
with 1,411 related to math, 1,838 to physics, 5,361 to statistics and 698 to econom-
ics. We extract each paper’s abstract and embed it into a 768-dimensional numerical 
vector using SentenceTransformers (Reimers and Gurevych 2019) under the 
all-mpnet-base-v2 model (Song et al. 2020) in Python. This large language 
model produces sentence-level embeddings that capture semantic similarity; there-
fore, abstracts with similar content yield similar embeddings. To form an observed 
dissimilarity matrix, we compute the pairwise cosine dissimilarities between embed-
dings, e.g, 1 − cos (xn, xn′) = 1 − xn·xn′

||xn||||xn′ ||  for xn, xn′ ∈ RD. Cosine dissimilarity 
is appropriate for textual data, as it emphasizes directional similarity over magnitude.

We apply B-sBMDS to this 9,308 by 9,308 observed distance matrix using 50, 
100, 500, 1,000 and 2,000 bands and obtain the posterior samples of the latent loca-
tions in a 2-dimensional space. We use an adaptive HMC algorithm with 20 leapfrog 
steps to recover the latent locations. We keep every 100th iteration and run enough 
iterations such that the ESS approximates the number of thinned samples, indicating 
“near-independence” among samples. To incorporate the uncertainty encoded in the 
sBMDS posterior samples, we implement a “bagged estimator”-style algorithm. We 
randomly draw S iterations from the joint posterior of the latent locations and apply 
hierarchical density-based spatial clustering of applications with noise (HDBSCAN) 
to each iteration using the dbscan package (Hahsler et al. 2019) in R. DBSCAN 
(Ester et al. 1996) is a non-parametric clustering algorithm that groups points into 
dense regions based on a user-defined radius parameter ϵ and a minimum number of 

Table 3  We compare the strain-specific posterior distributions of the inferred diffusion rates from the full 
and sparse BMDS methods
B-sBMDS
 B Hellinger distance Average efficiency speedup (min, max)
50 0.024 5.99 (5.58, 6.52)
100 0.021 4.06 (3.99, 4.14)
200 0.019 2.81 (2.76, 2.86)
L-sBMDS
 L Hellinger distance Average efficiency speedup (min, max)
50 0.024 5.22 (4.35, 5.63)
100 0.023 3.83 (3.69, 3.90)
200 0.022 2.97 (2.55, 3.52)
We calculate Hellinger distance between the posterior densities obtained using sparse Bayesian 
multidimensional scaling (sBMDS) and BMDS. Efficiency speedup is the ratio of effective sample size 
per hour between the full and sparse BMDS versions. We take the average efficiency speedup across the 
four influenza subtypes
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neighbors. Points within a dense region are assigned to the same cluster, while points 
in low-density regions are labeled as noise. HDBSCAN (Campello et al. 2015) per-
forms DBSCAN for various ϵ values and integrates the results to give the most stable 
output. By applying HDBSCAN, a bounded deterministic function, to the posterior 
draws of the latent locations from sBMDS, we induce a posterior distribution over the 
cluster assignments (Christensen et al. 2011).

Figure 11 visualizes the results of HDBSCAN applied to five posterior samples 
of the latent space plotted on the posterior mean of the latent locations. We set the 
minimum number of neighbors to 40. Table 4 reports clustering accuracy across band 
settings. Each cluster is assigned a subject label based on the most frequent ArXiv 
category among its members. Classification error is the proportion of articles whose 
ArXiv subject label does not match the subject label of their assigned cluster. We 
calculate the mean classification error across clusters and note that 500 bands provide 
a good balance between accuracy and computational cost.

Table 4  Accuracy as the number of bands increases using hierarchical density-based spatial clustering 
(HDBSCAN) on 200 randomly sampled inferred latent locations. The inferred locations are estimated 
from a 2-dimensional B-sBMDS framework and an adaptive Hamiltonian Monte Carlo (HMC) algorithm. 
Note that the number of clusters should be 4. HDBSCAN is a non-parametric clustering algorithm and 
therefore the number of clusters is predicted. Classification error is the proportion of articles whose ArXiv 
subject label does not match the majority subject label of their assigned cluster, and CI is the credible 
interval
Band Mode number of clusters Mean number of noise points Mean classification error (95% CI)
50 2 3975 0.226 (0.111, 0.315)
100 3 2954 0.094 (0.038, 0.171)
500 4 1380 0.051 (0.041, 0.061)
1000 4 1248 0.038 (0.031, 0.045)
2000 4 1009 0.034 (0.031, 0.037)

Fig. 11  Convex cluster hulls for five posterior samples of the inferred latent locations using hierarchi-
cal density-based spatial clustering (HDBSCAN). The inferred locations are estimated from a 2-di-
mensional B-sBMDS framework using 500 bands and an adaptive Hamiltonian Monte Carlo (HMC) 
algorithm. The convex hulls are plotted on the posterior mean of the inferred locations across 1,000 
iterations, and points outside a hull are considered noise. The ArXiv subject of a cluster is assumed by 
the most frequent ArXiv category among its members
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We obtain clustering labels for each article as indirectly induced by uncertainty in 
the sBMDS embeddings. Across the S iterations, we compute a co-clustering matrix 
that estimates the posterior pairwise probability that two articles belong in the same 
cluster. This matrix can be used for subsequent analyses such as consensus cluster-
ing. The combination of sBMDS with HDBSCAN provides an example of using a 
deterministic function on the state space from a sparse Bayesian embedding model to 
approximate uncertainty in post-hoc inference.

4  Discussion

We present two methods for subsetting the observed dissimilarity data: banded sparse 
BMDS (B-sBMDS) and landmark sparse BMDS (L-sBMDS). We show that both 
sparse methods obtain accurate results at low band/landmark counts even with noisy 
data. Moreover, combining HMC with sBMDS proves effective in inferring thou-
sands of latent locations. We successfully integrate the sBMDS variants within a 
Bayesian hierarchical model and demonstrate how posterior samples from sBMDS 
can be combined with deterministic algorithms to approximate uncertainty in down-
stream tasks.

Based on our experiments, we recommend B-sBMDS as the default choice, since 
it is more robust to model misspecifications. For example, in our influenza appli-
cation, in which the Euclidean assumption is violated, B-sBMDS yields a slightly 
smaller Hellinger distance than L-sBMDS (Table  3). However, when minimizing 
the number of dissimilarities is critical, L-sBMDS can be highly effective in favor-
able settings such as (i) the latent dimension is well specified, (ii) the noise distribu-
tion is close to Gaussian, and (iii) the dissimilarities can be well approximated by a 
Euclidean embedding. In such cases, L-sBMDS achieves higher accuracy with fewer 
landmarks (Figs. 2, 3), leading to greater speedups compared to B-sBMDS. Thus, 
the computational efficiency of L-sBMDS comes at the price of reduced robustness, 
making B-sBMDS the safer default across a wide range of applications.

Our simulations show that sBMDS performs well under misspecified noise, e.g., 
log-normal noise, which is a heavily skewed and heavy-tailed distribution (Fig. 5). 
Possible extensions to our work include the use of different noise distributions on the 
observed dissimilarities (Fig.  17). For example, Bakker and Poole (2013) employ 
Bayesian metric MDS, assuming the observed dissimilarities come from log-normal 
distributions. While beyond the scope of this paper, sBMDS could also be applied 
within a generalized BMDS framework (Zhang et al. 2025), which accommodates 
non-Gaussian errors and diverse dissimilarity metrics. As these distributions still 
have O(N2) time complexity, sBMDS could improve the computational perfor-
mance across a wider range of dissimilarity data. Another promising direction is the 
application of our sparse methods within non-Euclidean latent spaces, as explored in 
Liu et al. (2024). For example, negatively curved spaces such as the Poincaré disk 
are effective for embedding sparse or scale-free networks, since their exponential 
geometry aligns with power-law degree distributions. In such setting, L-sBMDS can 
improve efficiency by selecting highly connected nodes as landmarks.
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Additionally, many potential theoretical developments remain. For example, it 
appears that one needs approximately D

√
N  bands where N is the number of objects 

and D is the embedding space. However, we have no formal proof, only experimental 
results (Sects. 3.2 and 3.3, Fig. 16). Determining the number of desired bands/land-
marks is difficult due to its data-dependence. We explain in Sect. A.4 how one could 
extend Theorem 1’s proof of posterior consistency to higher dimensions. The biggest 
limitations are extending Lemma 3 and obtaining estimates with good dependence on 
dimension D. One could also explore treating the coupling matrix Jn,N  as a random 
variable that depends on the observed data (and perhaps changes over the run-time of 
an algorithm). An appealing feature of Raftery et al. (2012) is that they claim reason-
able uncertainty quantification along a truly linear run-time. It seems difficult to for-
malize such a result with posterior consistency for our sBMDS models as the number 
of bands (landmarks) grows with the number of objects. We are left with many tan-
talizing questions: “by including a data-informed approach to model sparsity, can we 
achieve a linear run-time and still demonstrate posterior consistency?”, “how should 
we be measuring consistency?”, and “do the datasets Raftery et al. (2012) study have 
any special features that change the rate of convergence for a sBMDS-like model?”

Lastly, we are interested in further extensions within phylogeography. Holbrook 
et al. (2021) and Li et al. (2023) select the dimension of the latent diffusion process 
using cross-validation, which is computationally demanding. Therefore, we want to 
incorporate a shrinkage prior within the Bayesian phylogenetic MDS framework that 
penalizes the eigenvalues of the diffusion rate matrix. As long as implementing such 
a prior does not slow down mixing, this approach may help one learn the latent loca-
tions in a faster, more unified manner.

Proof of Theorem 1

Throughout this section, we fix notation as in the statement of Theorem 1.

Consistent Estimates of Absolute Values

We note that |xn| (but not xn itself) is effectively identifiable given the data 
{δny}

y∈G
(k(n))
n,N

, and we have the posterior concentration bound:

Lemma 1  Fix some 0 < α < 0 .1  and a sequence ϵN = ℓ−0 .5+α
N . Then there exist 

constants c1 , c2 , c3 > 0  so that for all N sufficiently large and all n ∈ [N ], k ∈ [K ], 
we have:

	 P[p({u : min(|u − xn|, |u + xn|) ≤ c1ϵN }|{δny}
y∈G

(k(n))
n,N

) ≥ 1 − e−c2ℓN ϵ2
N ] ≥ 1 − e−c3ℓN ϵ2

N .�(19)

Proof  Given xn, the data {δny}
y∈G

(k(n))
n,N

 are i.i.d. with distributions being a finite 

mixture of truncated Gaussians. Denote the density of this distribution by qxn , and let 
F = {qu}u∈I  be the associated family of possible distributions.
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With ϵN  as above and this choice of F , for any fixed 0 < c < ccrit small enough 
and all N > N0 large enough, the sequence {ϵN } satisfies Inequality (3.1) of Wong 
and Shen (1995) for the collection of likelihoods F . Applying Theorem 1 of Wong 
and Shen (1995) (together with the well-known formula for Hellinger distances 
between Gaussians), there exist constants c1, c2, c3 so that for all N sufficiently large,

	

P[ sup
u : min(|u−xn|, |u+xn|)>c1ϵN

∏

y∈G
(k(n))
n,N

qu(δ∗
n,y)

qxn
(δ∗

n,y)
≥ e−c2ℓN ϵ2

N ] ≤ 4e−c3ℓN ϵ2
N ,�(20)

where the outer probability is taken with respect to the distribution of the data 
{δny}

y∈G
(k(n))
n,N

 given xn. On the other hand, for all u satisfying |u − xn| < 1
ℓ3

N
 and 

all N sufficiently large, we have

	

∏

y∈G
(k(n))
n,N

qxn
(δ∗

n,y)
qu(δ∗

n,y)
≤ 2.� (21)

Combining Inequalities (20) and (21) completes the proof (with possibly different 
values of c1, c2, c3). � □

Consistent estimates of signs

Fix n, n′ ∈ [N ] and associated indices k(n), k(n′) ∈ [K]. Fix 
J = Jn,N ∩ Jn′,N \(G(k(n))

n,N ∪ G
(k(n′))
n′,N ) satisfying |J | ≥ ℓN .

Let ˆ̃xn be the posterior median of the distribution of |xn| given {δny}
y∈G

(k(n))
n,N

, 

and similarly for ˆ̃xn′ . For j ∈ J , define the Bernoulli random variables Zj = 1Aj , 
where Aj  is the event:

	 Aj = {max(δnj , δn′j) > |ˆ̃xn − ˆ̃xn′ |}.� (22)

Note that ˆ̃xn, ˆ̃xn′  are {δny}
y∈G

(k(n))
n,N

∪ {δn′y}
y∈G

(k(n′))
n′,N

-measurable, and 

(δnj , δn′j) are independent of {δny}
y∈G

(k(n))
n,N

∪ {δn′y}
y∈G

(k(n′))
n′,N

 for each 

j ∈ J , and finally the collection {(δnj , δn′j)}j∈J  are independent. Thus, condi-
tional on {δny}

y∈G
(k(n))
n,N

∪ {δn′y}
y∈G

(k(n′))
n′,N

, the random variables {Zy}y∈J  are i.i.d. 

Denote by rn,n′  their common parameter. By the same argument as in Lemma 1, we 
have the posterior concentration bound:

Lemma 2  Fix notation 0 < α < 0 .1 , ϵN = ℓ−0 .5+α
N  and notation as above. Then 

there exist constants c1 , c2 , c3 > 0  so that, for all N sufficiently large,

	 P[p({r : |r − rn,n′ | ≤ c1ϵN }|{Zy}y∈J) ≥ 1 − e−c2ℓN ϵ2
N ] ≥ 1 − e−c3ℓN ϵ2

N .�(23)
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We observe that this will allow us to learn whether x̃n, x̃n′  have the same signs 
(as long as both are far from 0). More precisely, for j ∈ J , define Yj = 1Bj , where

	 Bj = {max(δnj , δn′j) > |ˆ̃xn + ˆ̃xn′ |}.� (24)

By the same argument as the one immediately following Equation (22), the Yj  are 
i.i.d. Bernoulli. Denote by qn,n′  their common parameter. The following is a direct 
calculation with Gaussians1:

Lemma 3  There exists C , D > 0  depending on σ so that, for all N sufficiently large, 
the following implication holds:

	 {min(|ˆ̃xn|, |ˆ̃xn′ |) > CϵN } ⇒ {|rn,n′ − qn,n′ | > D ϵN }.� (25)

Completing the Proof

We complete the proof of Theorem 1.

Proof  For constants c1, c2, c3 to be determined later, we define events

	
AN =

{
∀n ∈ [N ], k ∈ [K], p({u : min(|u − xn|, |u + xn|) ≤ c1ϵN }|{δny}

y∈G
(k(n))
n,N

) ≥ 1 − e−c2ℓN ϵ2
N

}
�(26)

1 If σ = 0, we’d just look at the probability that the latent position is in the interval 
(− min(|ˆ̃xn|, |ˆ̃xn′ |), min(|ˆ̃xn|, |ˆ̃xn′ |)), for which this is obvious. Since σ > 0, a complete calculation 
needs to add in a few additional cases. These doesn’t substantially change the results from the trivial case.

Fig. 12  The mean of the mean squared error (MSE) across all distances using 1 to 10 landmarks for 10 
data points and 1 to 20 landmarks for 100 and 1000 data points. We estimate Euclidean distances from 
the inferred locations obtained using an adaptive Hamiltonian Monte Carlo algorithm under landmark 
sparse Bayesian multidimensional scaling (L-sBMDS). σ2

true is the variance component of the trun-
cated normal noise centered at 0 added to the “true” distance matrix such that σtrue corresponds to the 
BMDS error standard deviation σ

 

1 3

Page 25 of 31     12 



A. Sheth et al.

and

	 BN =
{

∀n, n′ ∈ [N ], p({r : |r − rn,n′ | ≤ c1ϵN }|{Zy}y∈J) ≥ 1 − e−c2ℓN ϵ2
N

}
.�(27)

Since we have chosen ϵN = ℓ−0.5+α
N  for some 0 < α < 0.1, we have that 

ℓN ϵ2
N ≥ 1

2 Nα for all N sufficiently large. Thus, by Lemmas 1 and 2, we know that 
AN  and BN  occur asymptotically almost surely.

On the event AN , we correctly recover |x(N)
n | up to additive error O(ϵN ). We now 

fix a large constant C and consider two cases: 

1.	 When |x(N)
n | ≤ CϵN , recovering |x(N)

n | up to additive error O(ϵN ) also means 
recovering x(N)

n  up to additive error O(ϵN ).

Fig. 14  Posterior distribution of strain-specific diffusion rates inferred from 6-dimensional Bayesian 
phylogenetic multidimensional scaling with effective world-wide air traffic space distances for data. 
B-sBMDS/HMC uses 100 (left) and 200 (right) bands to compute the sparse banded likelihood and 
gradient for inference within the Hamiltonian Monte Carlo algorithm

 

Fig. 13  Time elapsed to calculate the landmark sparse Bayesian multidimensional scaling (L-sBMDS) 
likelihood and gradient using L landmarks as a function of the number of data points
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2.	 When |x(N)
n | ≥ CϵN  for fixed C sufficiently large, Lemma 3 implies that on BN  

we also recover the sign of x(N)
n .Thus, in either case, we recover x(N)

n  up to addi-
tive error O(ϵN ). � □

Fig. 16  Ratio of the mean Hellinger distance for various dimensionalities (D) and number of data 
points (N). Hellinger distances are computed from the posterior distributions of the estimated Euclid-
ean distances between full BMDS and banded sBMDS with ⌈D

√
N⌉ bands. Data is generated under 

Gaussian assumptions as described in Sect. 3. For fixed D, we calculate the ratio as the mean Hellinger 
distance with N data points and with N = 100. The near horizontal lines across the underlying di-
mensionality indicate that the selected number of bands obtains results that are very similar to the full 
model despite the increase in dimensions. The ratio of the Hellinger distance is smaller for larger N as 
error goes down at some statistical rate, e.g., of 1√

N

 

Fig. 15  The mean of the mean squared error (MSE) across all distances using 10, 20 and all bands/land-
marks for 50, 100 and 1,000 data points. We estimate Euclidean distances from the inferred locations 
obtained using an adaptive Hamiltonian Monte Carlo algorithm under the B-sBMDS, L-sBMDS and 
full BMDS frameworks. The prior of the latent locations is a multivariate normal distribution centered 
around 0 with standard deviation equal to 1

8 , 1
4 , 1

2  or 1. The “true” latent locations are generated from 
a standard normal multivariate distribution. We sometimes perform worse than simply sampling from 
the prior because the model “overcompensates” by inflating σ. Since the prior contribution grows with 
N, there is a threshold in the ratio between likelihood and prior contributions that must be exceeded for 
good recovery. With sufficiently large N, the likelihood eventually dominates. In practice, we recom-
mend that users 1) ensure the BMDS noise scale is small relative to the prior scale, which is scientifi-
cally reasonable since observed dissimilarities should be more informative than the latent spread, or 2) 
learn the prior scale/covariance structure as a hyperparameter in the model as we do in Sect. 3.2 or as 
in Oh and Raftery (2001)
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Extending Theorem 1 to higher dimensions

It is natural to ask if Theorem 1 holds in higher dimensions. The answer appears to 
be “yes,” but the only proofs that we are aware of have at least one of the following 
two substantial flaws: they are noticeably longer or give constants C that scale very 
poorly with dimension. We give here a quick sketch of a proof that closely mimics 
our one-dimensional argument. It requires no new ideas, but gives bounds that scale 
very poorly with respect to dimension.

In our proof of Theorem 1, we invoke Theorem 1 of Wong and Shen (1995) twice: 
once in Lemma 1 on the “single row” G(k(n))

n,N  to show that we have learned |xn| with 
high accuracy, and again in Lemma 2 on the “pair of rows with large intersection” 
J to show that we have learned the sign of xn (as long as |xn| is sufficiently large). 
To extend this to a higher dimension D, we would invoke Theorem 1 of Wong and 
Shen (1995) (D + 1) times. On the first invocation, we would show that the posterior 
distribution of xn concentrates near a (D − 1)-dimensional set that contains the true 
point. For 1 ≤ d ≤ D, in the d’th invocation, we would show that we have learned 
that xn is on a certain subset of dimension (D − d) with high accuracy by looking 
at d rows of the matrix. Thus, after D invocations, we would have shown that xn is 
recoverable up to a set of dimension 0. These calculations are nearly identical to the 
calculations in the current proof.

Fig. 17  The mean of the mean squared error (MSE) across all distances from 1 to 20 bands/landmarks 
for 500 data points. We estimate Euclidean distances from the inferred locations obtained using an 
adaptive Hamiltonian Monte Carlo algorithm under a one-parameter family of likelihoods interpolat-
ing between a Gaussian and Laplace. When β = 1, the likelihood reduces to a Gaussian and when 
β = 0, it reduces to a Laplace distribution. We vary β ∈ [0, 1] to explore sensitivity to heavier tails. 
The “true” latent dissimilarities are Euclidean distances between standard multivariate normal loca-
tions, while the observed dissimilarities are perturbed by Laplace noise calibrated to have a standard 
deviation of 0.2
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The last invocation would be used to deal with ambiguity on a finite set, as in the 
one-dimensional case. Most of the required changes would be routine (e.g., in part 
2 of Assumption 1, we would need intersections of (D+1) parts of the partition to 
support our (D+1) invocations of Theorem 1 of Wong and Shen (1995)). The biggest 
change comes in proving the natural analogue to Lemma 3. This calculation is what 
describes a quantitative sort of identifiability for the model. To extend our arguments 
to higher dimensions, we need a result along the lines of: “the set of latent points 
that (i) lie in a set of dimension (D − d + 1) and (ii) have a given expected distance 
r will lie in a reasonably nice set of dimension (D − d).” Ignoring truncations, one 
can easily check see that the following is true in dimension d = 1: for r > 0, the 
set of points x such that E[δnn′ |xn = x] = r is a sphere. When we allow for trun-
cations in dimension d = 1, we merely need to slice off part of the sphere, and so 
Lemma 3 is straightforward. For fixed d > 1, the various truncations and condition-
ings involved in repeatedly using this calculation will result in repeated application of 
unions, intersections and truncation operations to these spheres. In dimension d = 2, 
proving the resulting analogue of Lemma 3 in this way is a straightforward but very 
messy calculus exercise. Unfortunately, we see no easy way to do quick calculations 
on the resulting set in arbitrary dimension, and no way at all to obtain estimates with 
reasonable dependence on D.

Additional plots

Figures 12 and 13 are analogous to Figs. 1 and 7 from Sect. 3, but under the sparse 
model using landmarks (L-sBMDS). Figure  12 demonstrates that very few land-
marks are necessary to achieve high accuracy relative to the number of data points. 
Figure 13 plots the raw speed-ups, varying the number of landmarks as the number 
of data points increases. Figure 14 illustrates the posterior distribution of the strain-
specific diffusion rates under the B-sBMDS/HMC model using 100 and 200 bands. 
When the number of bands is 200, we see no apparent difference from the full BMDS 
plot in Fig. 9. In Figs. 15, 16 and 17, we explore the sensitivity of our sparse methods 
to modeling assumptions such as the choice of prior, number of bands relative to 
dimensionality and likelihood.
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